

Guidage à billes sur rail Série 500, guidage à rouleaux sur rail Série 500, guidage sur rail Série 400, AccuMini, MicroGuide, Série T

Linear Motion. **Optimized**.™

Thomson – des solutions de mouvement optimisées

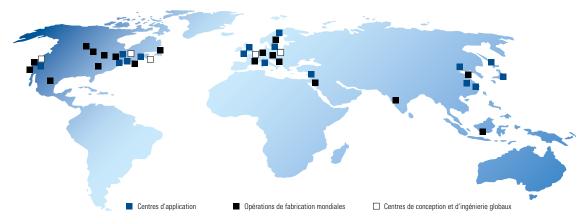
Bien souvent, la solution de conception idéale n'est pas la plus rapide, la plus solide, la plus précise, ni même la moins chère. C'est bien plus un équilibre optimal entre les performances, la durée de vie et les coûts.

Le fournisseur de technologies de mouvement mécanique le mieux positionné

Thomson présente plusieurs avantages qui font du groupe un fournisseur de choix en matière de technologies de commande de mouvement.

- Thomson propose la gamme de produits standard la plus vaste de l'industrie, en matière de technologies de commande de mouvement mécanique.
- Les versions modifiées des produits standard, ainsi que les solutions à la conception totalement novatrice sont devenues monnaie courante.
- Nous disposons d'une expérience de 70 années dans les applications globales à destination de diverses industries, dont celles du conditionnement, de l'automatisation, de la manutention, de la médecine, de l'énergie propre, de l'imprimerie, de l'automobile, des machines-outils, de l'aérospatiale et de la défense.
- En tant que division de Danaher Corporation, nous sommes financièrement solides et les seuls à combiner les technologies relatives à la commande, l'entraînement, au moteur, au transport d'énergie et au mouvement linéaire de précision.

Un nom de confiance


Une mine d'informations sur les produits et applications, ainsi que des modèles 3D, des logiciels ou les coordonnées des distributeurs et des personnes à contacter sont disponibles sur le site www.thomsonlinear.com. Pour bénéficier d'une assistance, contactez votre revendeur local (les coordonnées de la personne à contacter sont énumérées au dos du catalogue).

Contactez-nous dès les débuts du processus de conception, afin de nous permettre d'identifier l'équilibre optimal entre les performances, la durée de vie et les coûts pour votre nouvelle application. Pour une livraison rapide des pièces de rechange, contactez-nous par téléphone. Vous pouvez également appeler l'un de nos partenaires de distribution, qui sont plus de 2 000 dans le monde.

Le Danaher Business System

Le Danaher Business System (DBS) a été créé pour accroître la valeur ajoutée que nous offrons à nos clients. Nous utilisons cet ensemble d'outils éprouvé et performant, chaque jour, afin d'améliorer en permanence les opérations de fabrication et les processus de développement de produits. Le système DBS repose sur les principes Kaizen qui consistent à éliminer de manière constante et efficace toute forme de gaspillage pour chaque aspect de notre activité. Il contribue à focaliser l'ensemble de l'organisation sur la réalisation de résultats exceptionnels qui permettent de créer des avantages concurrentiels en termes de qualité, de délais et de performances, avantages dont vous profiterez directement. Grâce à ces avantages, Thomson est en mesure de réduire les délais de commercialisation, d'offrir une gamme d'excellents produits et d'optimiser le service, la fiabilité et la productivité.

Assistance locale dans le monde entier

Présentation du guidage sur rail Thomson

4

Présentation
Guidage linéaire à billes sur rail Série 500 8 Guidage sur rail Thomson nouvelle génération. Conception supérieure. Qualité supérieure.
Présentation du produit
Référence19
Fiches techniques
Options et accessoires
Informations précises
Informations sur la précharge
Guidage linéaire à rouleaux sur rail Série 500
Présentation du produit
Référence
Fiches techniques55
Options et accessoires
Composants de lubrification
Informations précises
Informations sur la précharge
Guidage linéaire sur rail Série 400
Présentation du produit
Référence
Informations précises
Informations sur les moments
Informations sur les trous de goupilles des chariots
Informations sur les rails
A = = M : :
AccuMini
Présentation du produit
Référence
Fiches techniques84
Informations précises
Informations sur la précharge
MicroGuide 87
Série T
Guide d'installation
Guide technique
Taille, sélection et calculs de la charge et de la durée de vie
Déformation
Lubrification
Calculs de couvre-glissières
Fiches de spécification des joints d'about
Facteurs de conversion
Guide de remplacement

Présentation des guidages linéaires sur rail de Thomson

Depuis l'invention des roulements à billes antifriction linéaires par Thomson il y a plus de 50 ans, les produits linéaires de précision Thomson sont synonymes de qualité supérieure et d'innovation. Thomson produit et conçoit aujourd'hui encore des produits innovants et de qualité. La gamme de guidages sur rail Thomson compte les guidages linéaires sur rail à billes et à rouleaux Série 500 nouvelle génération, les guidages miniatures compacts MicroGuide™, les guidages légers Série T et les guidages AccuMini.

Guidage linéaire à rouleaux sur rail Série 500

Caractéristiques et avantages

Conception supérieure. Qualité supérieure.

- Les meilleures capacités de charge du secteur
- Rigidité élevée à partir de structure à 4 rouleaux adossés
- Rails droits grâce aux technologies de polissage avancées
- Installation simple et grande précision grâce à des rails d'une pièce mesurant jusqu'à 6 mètres
- Mouvement fluide et silencieux grâce aux circuits de recirculation moulés brevetés et aux géométries optimisées
- Plusieurs styles et tailles de chariots disponibles
- · Joints modulaires modifiables sur site
- Options de rails et de chariots disponibles en stock ou livrés rapidement
- Personnalisation avec une offre d'accessoires diversifiée
- Remplacement des guidages Thomson Accumax

Applications types

- Automatisation industrielle
- · Robots industriels
- · Équipement de machines-outils
- Équipement de mesure de précision

La gamme de guidages linéaires sur rail est un assortiment complet de rails et de chariots, dans divers styles et tailles et présentant des caractéristiques uniques conformes aux cotes standard de l'industrie. Ces produits peuvent être facilement installés ultérieurement dans les applications existantes ou personnalisés pour de nouvelles applications.

Guidage linéaire à billes sur rail Série 500

Caractéristiques et avantages

Conception supérieure. Qualité supérieure.

- Rails droits grâce aux technologies de polissage avancées
- Installation simple et grande précision grâce à des rails d'une pièce mesurant jusqu'à 6 mètres
- Mouvement fluide et silencieux grâce aux circuits de recirculation moulés brevetés et aux géométries optimisées
- Lubrification prolongée grâce à l'intégration de poches de graisse dans le circuit de recirculation
- Plusieurs styles et tailles de chariots disponibles
- · Joints modulaires modifiables sur site
- Options de rails et de chariots disponibles en stock ou livrés rapidement
- Personnalisation avec une offre d'accessoires diversifiée
- Remplacement des guidages Thomson AccuGlide

Applications types

- Automatisation industrielle
- Équipement de machines-outils
- Équipement de mesure de précision
- · Robots industriels

Caractéristiques et avantages

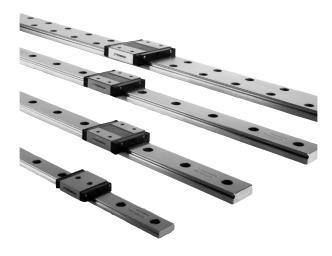
- Le tube à renvoi de billes en polymère réduit le bruit et les vibrations tout en préservant la lubrification.
- Joints à double lèvre standard et longitudinaux préservant la lubrification tout en protégeant le roulement des agents contaminants
- Les canaux de lubrification conduisent le lubrifiant vers les différentes pistes de billes pour une efficacité optimale de la lubrification
- Les pistes de billes à double face utilisent une disposition des roulements face à face à 45°, pour une capacité de charge identique dans toutes les directions
- L'option cage à billes 413 apporte une plus grande fluidité de déplacement, une réduction du bruit à des vitesses élevées et des réservoirs de lubrifiant individuels
- Voir le catalogue des guidages linéaires sur rail Série 400 Thomson pour plus d'informations

Applications types

- · Automatisation industrielle
- Équipement d'emballage
- Équipement agroalimentaire

AccuMini

Caractéristiques et avantages


- Mécanisme de contrôle des billes pour un fonctionnement fluide, avec réduction du bruit et des frottements à des vitesses élevées
- Joint racleur intégré sur toute la longueur qui protège les roulements importants contre toute contamination, prolongeant ainsi la durée de vie du système
- Conception en arc brisé, pour une amplitude de moment de roulement élevée, essentielle pour les applications autonomes
- Plaque de retenue en polymère sophistiquée et résistante qui réduit le bruit et l'inertie du système

Applications types

- Équipement de manutention de plaquettes
- Équipement d'assemblage
- Équipement de contrôle et de mesure

Caractéristiques et avantages

- Substitution aux standards de l'industrie
- Structure 440 en acier inoxydable (résistance à la corrosion, lubrification limitée voire inutile)
- Précision élevée (jusqu'à ± 0,010 mm)
- Fonctionnement fluide et silencieux
- Discret
- Amplitude de moment élevée pour les applications monorail/chariots
- Mouvement silencieux
- Gorge à billes en arc brisé permettant une application monorail
- La longueur d'une pièce peut atteindre 1 mètre (tailles 7 mm - 15 mm)
- Contactez Thomson pour les longueurs et les configurations personnalisées

Applications types

- Équipement de traitement de semi-conducteurs initial
- Équipement de manutention et d'emballage de semi-conducteurs final
- Équipement de diagnostic médical et d'imagerie
- Équipement d'automatisation de laboratoire
- Équipement de test et de contrôle

Série T

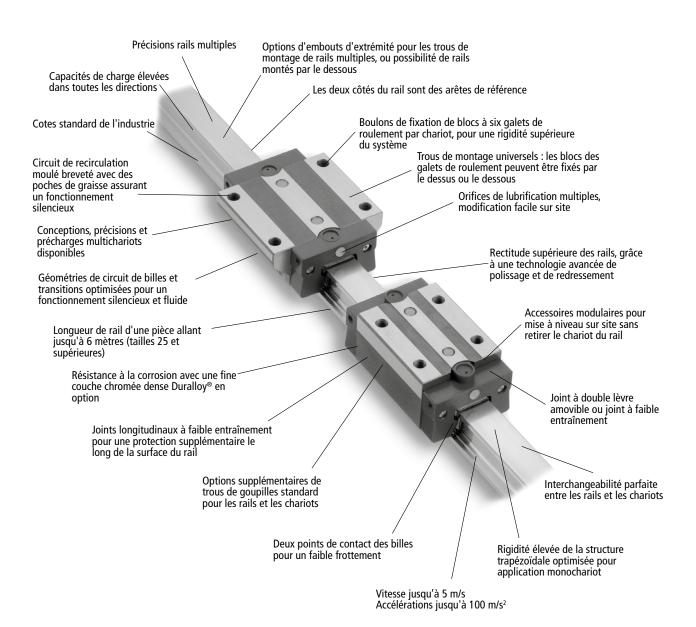
Caractéristiques et avantages

- Alternative légère, flexible et facile à manier au guidage sur rail tout acier.
- Produit de haute qualité fabriqué à partir d'un alliage aluminium utilisé généralement en aéronautique avec des plaques de roulement de charge en acier trempé et des circuits de billes.
- Choix parfait pour des applications nécessitant un poids réduit ou de l'inertie.
- Souplesse élevée qui se traduit dans une seule option de faux-rond radial de classe N.
- La structure propriétaire du canal en « U » permet de « déformer » les rails afin de les adapter aux bases usinées médiocres ou aux erreurs d'alignement.
- Coûts et temps d'installation réduits en éliminant le recours à des outils et bases usinées.
- Substitution aux guidages sur rail linéaires tout acier classique.

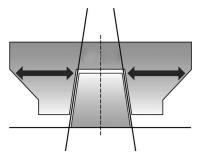
Applications types

- Avions
- Automobiles
- Navires
- Emballage

Gamme


				Bille	s Série	e 500			Rou	ıleaux	Série	500				Série	400				AccuMini	Micro	Guide		Séri	ie T	
		Star	ndard			Étroit			Stan	dard	Ét	roit	Star	ndard			Étr	roit			Standard	Standard	Large		Stan	dard	
			Long		Long		Long	Court		Long		Long		Long			Long		Long	Court							
_						Haut	Haut											Haut	Haut				_			_	
	5																					•					
	7																					•	•				
	9																					•	•				
	10																				•						
	12																					•	•				
l E	15	•		•		•		•					•	•	•		•	•		•	•	•	•				
Taille [mm]	20	•	•	•	•			•					•	•	•	•			•	•	•			•	•	•	•
<u>a</u>	25	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•
	30	•	•	•	•	•	•						•	•	•		•	•	•	•							
	35	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•				•	·	•	•
	45	•	•	•			•		•	•	•	•	•	•	•		•	•	•								
	55								•	•	•	•															
	65								•	•	•	•															
	Style	Α	В	С	D	Е	F	G	Α	В	С	D	Α	В	С	K	D	Е	F	G	А	S.O.	S.O.	Α	G	Е	F
	Page	21	21	23	23	25	25	27	55	55	57	57	74	74	75	75	75	76	76	75	85	88	90	98	98	99	99

Critère d'application


Caractéristique	Billes Série 500	Rouleaux Série 500	Série 400	AccuMini	MicroGuide	Série T
Capacité de charge	•••	••••	•••	••	•	••
Charges équivalentes dans toutes les directions	•••	••••	•••	••	••	•
Ultracompact	•	•	••	•••	••••	•
Précision de déplacement élevée	••••	••••	•••	••••	••••	•••
Rigidité	•••	••••	••	••	••	•
Fonctionnement fluide	•••	••	•••	••••	••••	•••
Caractéristiques de frottement	••••	••	•••	••••	••••	••
Vitesse acceptée	••••	•••	••••	••••	••••	•••
Facilité d'installation	•••	••	•••	••	•••	••••
Légèreté	•	•	•	••	•••	••••
Cotes standard de l'industrie	••••	••••	••••		••••	••••
Page	8	44	72	83	87	94

^{• =} satisfaisant •••• = excellent

Caractéristiques

Le guidage linéaire à billes Série 500 Thomson se caractérise par une durée de vie supérieure, une rigidité exceptionnelle, des capacités de charge dynamique et statique élevées et une haute précision. Il est doté de plusieurs options de joints et d'orifices de lubrification et est conçu pour supporter des amplitudes de moment élevées. Toutes ces caractéristiques facilitent la modification de ces systèmes sur site et leur substitution aux produits proposés par les concurrents.

Ces propriétés renforcent la précision et la rigidité des guidages et contribuent à réduire les vibrations. Les utilisateurs voient ainsi la durée de vie de leurs machines et de leurs outils prolongée. Ceci a un impact direct sur les performances des entreprises et permet à l'utilisateur de réduire ses coûts.

Disponibles en 7 modèles de chariots, de 15 mm à 45 mm.

Guidages linéaires de matériaux

Les guidages linéaires à billes Série 500 sont fabriqués à partir d'un acier à roulements de qualité supérieure. Tous les chariots et les éléments roulants sont trempés à cœur et tous les rails cémentés-trempés (à l'exception des rails de 15 mm qui sont trempés à cœur). L'embout d'extrémité est fabriqué en nylon chargé de verre hautement résistant avec un joint en caoutchouc nitrile. Des contrôles qualité très stricts sont mis en oeuvre pour garantir l'homogénéité des matériaux dès la source et nous permettre ainsi d'offrir des produits de qualité supérieure.

Interchangeabilité

Les guidages linéaires à billes Série 500 sont entièrement interchangeables. N'importe quel chariot peut progresser sur tout type de rail de la même précision sans altérer la précision du système. Ceci est possible grâce à nos contrôles du processus de fabrication stricts.

Précision et précharge

Les guidages linéaires à billes Série 500 sont disponibles dans trois catégories de précision différentes, dans trois gammes de précharge différentes, et avec un jeu afin de permettre la personnalisation en fonction des besoins de votre application.

Rectitude

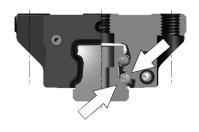
Le rail à billes Série 500 est soumis à de multiples traitements de redressement pendant et après le polissage des circuits des rouleaux.

Ces nombreux traitements et contrôles permettent de produire des rails offrant la meilleure rectitude du marché, améliorant la précision des machines dotées de billes Série 500.

Riaidit

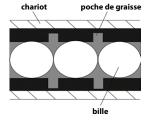
Le guidage linéaire à billes Série 500 utilise une structure trapézoïdale spéciale qui optimise la coupe transversale du chariot et permet ainsi d'obtenir une rigidité maximale.

Fonctionnement fluide/Réduction du bruit


Le fonctionnement fluide et la réduction du bruit résultent d'un circuit de recirculation moulé personnalisé et breveté, dont la forme géométrique optimisée et les transitions minimales assurent le fonctionnement fluide et le faible niveau sonore, aussi bien à vitesse réduite qu'à grande vitesse.

En outre, les billes n'entrent en contact qu'en deux points seulement entre les rails et le chariot, réduisant ainsi le frottement au minimum, pour un fonctionnement fluide et sans bruit.

Structure adossée


Le guidage linéaire Série 500 utilise une structure de roulements adossés pour une plus grande rigidité. De ce fait, les billes Série 500 peuvent être utilisées dans les applications monorail.

Poches de graisse internes

Le circuit de recirculation moulé breveté intègre des poches de graisse. Celles-ci renforcent la sécurité du système en assurant la bonne lubrification des roulements à billes, prolongeant ainsi leur durée de vie.

Grâce à cette poche et à l'espace compris entre les billes, le circuit des billes bénéficie d'une plus grande quantité de graisse qu'un roulement pour guidage linéaire classique.

Plusieurs options de lubrification

L'embout d'extrémité standard est conçu pour apporter une certaine souplesse. L'embout d'extrémité standard comprend quatre orifices de lubrification qui peuvent être facilement modifiés sur site ou ajoutés en usine.

Si vous n'êtes pas certain de l'emplacement le plus approprié pour l'orifice de lubrification, ces chariots vous permettent de les modifier très simplement sur site, afin d'optimiser les performances de votre système. En outre, la maintenance est simple car vous n'avez même pas à séparer le chariot du rail.

Accessoires modulaires disponibles

Le chariot standard est fourni avec des joints longitudinaux et des joints à double lèvre qui couvrent entièrement le chariot contenant les roulements afin de protéger les billes et les surfaces des pistes et de minimiser les pertes de lubrifiant.

D'autres frotteurs ou racleurs métalliques, blocs de lubrification et réservoirs d'huile peuvent être facilement installés sur site ou ajoutés en usine.

La structure trapézoïdale des rails facilite l'entretien et le remplacement ou l'ajout d'un embout d'extrémité, d'un frotteur supplémentaire et d'un réservoir d'huile sans qu'il soit nécessaire de séparer le chariot des rails.

Ces caractéristiques novatrices permettent aux utilisateurs de mettre à niveau facilement, efficacement et à moindre coût les joints du chariot.

Joints longitudinaux

Sous le chariot sont intégrés des joints longitudinaux à faible entraînement destinés à protéger les billes et leur circuit contre tout agent contaminant. Ces joints longitudinaux sont une protection supplémentaire qui contribue à prolonger la durée de vie des guidages et à optimiser leurs performances globales.

Conceptions standard supplémentaires

Les conceptions standard supplémentaires sont un ensemble de trous de goupilles proposé par Thomson pour les chariots et les rails. Grâce à cette nouvelle solution proposée par Thomson, finis les tâtonnements et la perte de temps dans la conception de vos systèmes. Pour plus d'informations et pour consulter les fiches techniques détaillées, reportez-vous aux pages 29, 30 et 33.

Accessoires pour rails

Plusieurs options de remplissage des trous de montage sont associées aux rails afin d'éviter tout risque de contamination des roulements. Des embouts en plastique personnalisés, du ruban de mylar et des baguettes de couverture des rails en acier inoxydable sont disponibles.

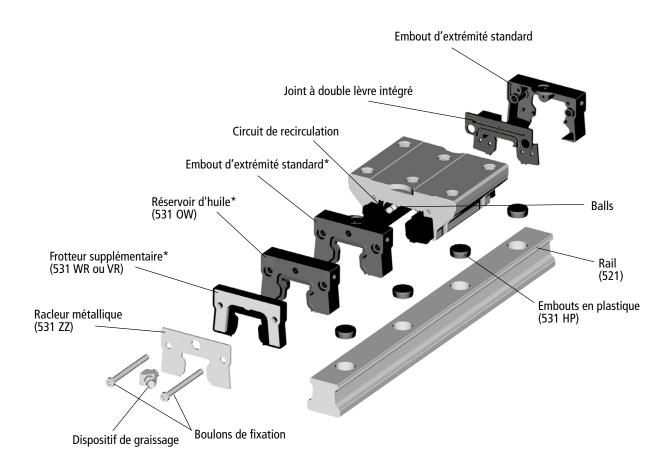
Plaque de rétention des billes

Les éléments roulants des chariots sont retenus dans le roulement de sorte que le chariot puisse être séparé du rail sans crainte que les billes s'échappent. Lorsque vous séparez le chariot du rail, il est recommandé de placer le chariot sur un rail ou un arbre de montage afin de bien protéger les éléments roulants.

Chariot amélioré pour guidage sur rail Série 500

Une nouvelle fluidité de fonctionnement accrue de 66 % avec une force d'entraînement réduite de $50 \%^*$

Nouvelles options d'écartement de billes et d'acier inoxydable


Caractéristiques et avantages

Désormais disponible en plusieurs tailles : le nouveau modèle de chariot amélioré pour guidage sur rail Série 500 peut optimiser la fluidité de fonctionnement et la précision de votre application de mouvement linéaire. Les nouveaux chariots et rails inoxydables 440B en option possèdent une résistance à la corrosion parfaitement adaptée pour les applications relatives aux secteurs des semi-conducteurs, de l'assemblage de produits électroniques, de l'alimentaire et de la médecine.

- Les nouvelles options de chariot à écartement de billes assurent des mouvements fluide et silencieux.
- La nouvelle conception permettant un fonctionnement fluide optimise les interfaces des surfaces entre les zones de transition en acier et en plastique le long du circuit de circulation des roulements à billes.
- Les nouveaux joints d'extrémité standard assurent une protection contre les agents contaminants deux fois plus efficace par rapport aux produits proposés par les concurrents. Les joints d'extrémité d'entraînement faible en option sont parfaits pour les exigences en force de poussée limitées.
- Quatre joints longitudinaux par chariot assurent une meilleure protection contre les agents contaminants par rapport à des conceptions concurrentes dotées de seulement deux joints longitudinaux.
- Un réservoir de lubrifiant supplémentaire permet un temps de fonctionnement plus long et un changement facile des embouts d'extrémité, ainsi qu'un remplacement rapide des joints.
- Interchangeable à 100 % avec les chariots et rails Séries 500 de Thomson précédents.

^{*} fluidité accrue de 66 % mesurée en tant que variabilité de la force d'entraînement lorsque le chariot est en mouvement. Force d'entraînement réduite de 50 % mesurée avec les nouveaux joints d'entraînement faible en option, force d'entraînement réduite de 41 % mesurée avec un racleur standard en option.

Accessoire modulaire - Vue éclatée

Également disponibles (non illustrés) :

- Bloc de lubrification (531 LL)
- Ruban de mylar pour rail (531 RT)
- Rail à fixation par le dessous (521 Type U)
- Rail et baguette de couverture, rail en acier inoxydable (521 Type C et 531RCS)
- * Peuvent être installés sans qu'il soit nécessaire de séparer le chariot du rail

La structure modulaire de l'ensemble du guidage linéaire à billes sur rail Série 500 facilite les mises à niveau sur site et permet d'effectuer des changements rapides de joints ou de lubrification, sans qu'il soit nécessaire de séparer le chariot du rail

Chariots à billes standard Série 500

Thomson propose six styles de chariots comportant six trous de montage qui permettent aux chariots d'être montés sur site ou ultérieurement. Tous se caractérisent par une rigidité supérieure et une conception très souple.

						Référence	e de base		Style de rail	Max. Longueur de
	Sty	/le	Taille	Accuracy			Précharge			rail d'une pièce (mm)
	•				Clearance	0,03C	0,08C	0,13C	starraura approprie	ran a ane piece (iiii)
				Н	511H15A0	511H15A1	511H15A2	-	521H15A	
			15	P	-	511P15A1	511P15A2	511P15A3	521P15A	1500
				U	-	511U15A1	511U15A2	511U15A3	521U15A	
				Н	511H20A0	511H20A1	511H20A2	-	521H20A	
			20	P	-	511P20A1	511P20A2	511P20A3	521P20A	3000
				U	-	511U20A1	511U20A2	511U20A3	521U20A	
		4	25	H P	511H25A0	511H25A1 511P25A1	511H25A2 511P25A2	511P25A3	521H25A 521P25A	6000
Chariot			25	U	-	511U25A1	511U25A2	511F25A3 511U25A3	521U25A	6000
standard	A			Н	511H30A0	511H30A1	511H30A2	-	521H30A	
Stariuaru		(a)	30	P	-	511P30A1	511P30A2	511P30A3	521P30A	6000
				U	-	511U30A1	511U30A2	511U30A3	521U30A	
				Н	511H35A0	511H35A1	511H35A2	-	521H35A	
			35	Р	-	511P35A1	511P35A2	511P35A3	521P35A	6000
		M		U	-	511U35A1	511U35A2	511U35A3	521U35A	
				Н	511H45A0	511H45A1	511H45A2	-	521H45A	
			45	P	-	511P45A1	511P45A2	511P45A3	521P45A	6000
				U	-	511U45A1	511U45A2	511U45A3	521U45A	
				Н	511H20B0	511H20B1	511H20B2	-	521H20A	
			20	Р	-	511P20B1	511P20B2	511P20B3	521P20A	3000
				U	-	511U20B1	511U20B2	511U20B3	521U20A	
				Н	511H25B0	511H25B1	511H25B2	-	521H25A	
			25	P	-	511P25B1	511P25B2	511P25B3	521P25A	6000
Chariot				U H		511U25B1	511U25B2	511U25B3	521U25A 521H30A	
long	В	• • •	30	P P	511H30B0	511H30B1 511P30B1	511H30B2 511P30B2	511P30B3	521H30A 521P30A	6000
standard			30	U	-	511U30B1	511U30B2	511U30B3	521U30A	0000
Staridard				Н	511H35B0	511H35B1	511H35B2	-	521H35A	
		الليليات	35	P P	-	511P35B1	511P35B2	511P35B3	521P35A	6000
			33	Ü	-	511U35B1	511U35B2	511U35B3	521U35A	0000
				Н	511H45B0	511H45B1	511H45B2	-	521H45A	
			45	Р	-	511P45B1	511P45B2	511P45B3	521P45A	6000
				U	-	511U45B1	511U45B2	511U45B3	521U45A	
				Н	511H15C0	511H15C1	511H15C2	-	521H15A	
		•	15	Р	-	511P15C1	511P15C2	511P15C3	521P15A	1500
				U	-	511U15C1	511U15C2	511U15C3	521U15A	
				Н	511H20C0	511H20C1	511H20C2	-	521H20A	
			20	P	-	511P20C1	511P20C2	511P20C3	521P20A	3000
Chariot				U	-	511U20C1	511U20C2	511U20C3	521U20A	
	C	0	25	Н	511H25C0	511H25C1	511H25C2	-	521H25A	6000
étroit			25	P U	-	511P25C1	511P25C2	511P25C3	521P25A	6000
				H	511H30C0	511U25C1 511H30C1	511U25C2 511H30C2	511U25C3	521U25A 521H30A	
			30	P	-	511P30C1	511P30C2	511P30C3	521P30A	6000
		이익이] 30	Ü		511U30C1	511U30C2	511U30C3	521U30A	0000
				Н	511H35C0	511H35C1	511H35C2	-	521H35A	
		0	35	P	-	511P35C1	511P35C2	511P35C3	521P35A	6000
				Ü	-	511U35C1	511U35C2	511U35C3	521U35A	
		CT TREADS		Н	511H20D0	511H20D1	511H20C2	-	521H20A	
		•	20	Р	-	511P20D1	511P20D2	511P20D3	521P20A	3000
				U	-	511U20D1	511U20D2	511U20D3	521U20A	
		0		Н	511H25D0	511H25D1	511H25D2	-	521H25A	
Chariot			25	P	-	511P25D1	511P25D2	511P25D3	521P25A	6000
long	D	미웨티		U	-	511U25D1	511U25D2	511U25D3	521U25A	
étroit				Н	511H30D0	511H30D1	511H30D2	-	521H30A	
25.1			30	P	-	511P30D1	511P30D2	511P30D3	521P30A	6000
ĺ				U	-	511U30D1	511U30D2	511U30D3	521U30A	
			25	H	511H35D0	511H35D1	511H35D2	-	521H35A	6000
1			35	P	-	511P35D1	511P35D2	511P35D3	521P35A	6000
				U	-	511U35D1	511U35D2	511U35D3	521U35A	

						Référence	e de base		Style de rail	Max. Longueur de
	St	yle	Taille	Accuracy			Précharg	e	standard approprié	rail d'une pièce (mm)
	•	,			Clearance	0,03C	0,08C	0,13C	Standard approprie	Irali u ulie piece (Illili)
				Н	511H15E0	511H15E1	511H15E2	-	521H15A	
			15	P	-	511P15E1	511P15E2	511P15E3	521P15A	1500
				U	-	511U15E1	511U15E2	511U15E3	521U15A	
		ممت		Н	511H25E0	511H25E1	511H25E2	-	521H25A	
			25	P	-	511P25E1	511P25E2	511P25E3	521P25A	6000
				U	-	511U25E1	511U25E2	511U25E3	521U25A	
Chariot				Н	511H30E0	511H30E1	511H30E2	-	521H30A	
	Ε		30	P	-	511P30E1	511P30E2	511P30E3	521P30A	6000
haut étroit				U	-	511U30E1	511U30E2	511U30E3	521U30A	
				Н	511H35E0	511H35E1	511H35E2	-	521H35A	
			35	P	-	511P35E1	511P35E2	511P35E3	521P35A	6000
				U	-	511U35E1	511U35E2	511U35E3	521U35A	
				Н	511H45E0	511H45E1	511H45E2	-	521H45A	
		•	45	P	-	511P45E1	511P45E2	511P45E3	521P45A	6000
				U	-	511U45E1	511U45E2	511U45E3	521U45A	
				Н	511H25F0	511H25F1	511H25F2	-	521H25A	
			25	P	-	511P25F1	511P25F2	511P20F3	521P25A	6000
				U	-	511U25F1	511U25F2	511U20F3	521U25A	
				Н	511H30F0	511H23F1	511H30F2	-	521H30A	
Chariot			30	P	-	511P30F1	511P30F2	511P30F3	521P30A	6000
long haut	F			U	-	511U30F1	511U30F2	511U30F3	521U30A	
étroit	r			Н	511H35F0	511H35F1	511H35F2	-	521H35A	
elioit			35	P	-	511P35F1	511P35F2	511P35F3	521P35A	6000
				U	-	511U35F1	511U35F2	511U35F3	521U35A	
				Н	511H45F0	511H45F1	511H45F2	-	521H45A	
		 	45	P	-	511P45F1	511P45F2	511P45F3	521P45A	6000
		<u> </u>		U	-	511U45F1	511U45F2	511U45F3	521U45A	
]		Н	511H15G0	511H15G1	511H15G2	-	521H15A	
Chariot			15	P	-	511P15G1	511P15G2	511P15G3	521P15A	1500
court	G			U	-	511U15G1	511U15G2	511U15G3	521U15A	
	u			Н	511H20G0	511H20G1	511H20G2	-	521H20A	
étroit			20	P	-	511P20G1	511P20G2	511P20G3	521P20A	3000
		1		U	-	511U20G1	511U20G2	511U20G3	521U20A	

Options de chariots standard supplémentaires

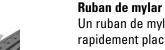
Les chariots sont également disponibles avec des trous de goupilles ou des orifices de lubrification standard Thomson, comme illustré pages 29 à 33, ou des lubrifiants spéciaux disponibles en stock ou livrés dans des délais très brefs.

Type U

Type A

Types de rails et accessoires

Les rails sont disponibles dans deux configurations :


- Fixation par le dessus 521 Type A
- Fixation par le dessous 521 Type U

Un embout ou un joint, comme décrit ci-dessous, peut être apposé sur les trous de montage des rails 521 standard après leur installation.

Embouts en plastique

Les embouts en plastique 531HP sont une méthode simple et bon marché pour boucher les zones de fixation des rails. Ces embouts en plastique sont faciles à mettre en place sur n'importe quel rail avec un chasse-cône souple non métallique et peuvent être facilement retirés.

Un ruban de mylar spécial constitue une alternative simple et bon marché qui peut être rapidement placée sur la surface du rail. La référence 531RT mesure 3 mètres.

Baguette de couverture en acier inoxydable

L'option 531RC utilise un rail spécial (521 Type C) et une baguette de couverture en acier inoxydable pour rail, qui peut être facilement installée avec l'outil de montage approprié.

Autres types de joints et d'accessoires de lubrification

Le chariot intègre des options de lubrification et des joints modulaires qui peuvent être facilement modifiés sur site ou ajoutés directement en usine.

L'embout d'extrémité du chariot standard intègre un joint à double lèvre à faible frottement et un joint longitudinal qui couvrent totalement le chariot contenant les roulements. Le joint à double lèvre protège le système contre tout agent contaminant et favorise la lubrification. Il assure également l'élimination de la graisse du chariot afin d'éviter les excès de lubrification qui peuvent entraîner une hausse des températures de fonctionnement. Ces joints à double lèvre peuvent être utilisés avec la lubrification à l'huile.

L'embout d'extrémité du chariot standard comprend un orifice de lubrification, doté d'un canal de lubrifiant spécial qui dirige ce dernier vers les différentes pistes de billes. L'orifice de lubrification peut être facilement changé sur site ou ajouté en usine sur le côté ou le dessus du système.

Joints supplémentaires

Les joints **531WR** et **531VR** fournissent à l'ensemble une protection supplémentaire contre les agents contaminants. Ces joints peuvent être facilement ajoutés sur site, sans avoir à séparer le chariot du rail. Ils sont accompagnés des vis requises pour faciliter leur installation.


- Le joint 531WR est en caoutchouc nitrile résistant (Buna N)
- Le joint 531VR est en Viton[®] résistant

Ces joints sont compatibles avec d'autres accessoires modulaires en option, ce qui permet d'améliorer l'efficacité des joints standard. Cette option peut être facilement installée sur site ou ajoutée en usine.

Racleur métallique

Le racleur métallique Type 531ZZ, en acier inoxydable, renforce la protection des lèvres du joint contre les grosses saletés et les copeaux métalliques. Ces agents contaminants volumineux peuvent être éliminés facilement, assurant ainsi une protection supérieure des lèvres du joint. Le racleur métallique est compatible avec les autres accessoires modulaires en option, ce qui permet d'améliorer sans difficulté l'efficacité des joints standard. Cette option peut être facilement installée sur site ou ajoutée en usine.

Comparaison de l'entraînement relatif par rapport à la conception

inement relatif
•
• • •
• • •
•
• •
• • • •

• Faible

Pour passer commande ou connaître d'autres types de joints et d'accessoires de lubrification, voir pages 37 à 38.

Réservoir d'huile

Le **réservoir d'huile** Type **5310W** est un système de lubrification automatique économique. Il intègre un réservoir d'huile assurant une lubrification uniforme et régulière des circuits de billes pendant de longues périodes. Lorsque vous utilisez la plaque de lubrification du réservoir d'huile Type 5310W, vous n'avez plus à planifier une maintenance régulière et la lubrification est effectuée aux endroits requis. Par ailleurs, le réservoir est rempli lorsque cela est nécessaire et il peut assurer la lubrification sur 5 000 km au maximum. Le réservoir d'huile Type 5310W est compatible avec d'autres accessoires modulaires en option, ce qui permet d'améliorer sans difficulté l'efficacité des joints standard. Ces options peuvent être facilement installées sur site ou ajoutées en usine.

Bloc de lubrification

Le bloc de lubrification 531LL est un lubrifiant solide. consistant en un mélange de polymères, d'huiles et d'additifs sélectionnés qui réduisent la pénétration de poussière, de particules et de liquides dans le circuit des billes, évitant ainsi des pannes prématurées. L'huile se diffuse à travers le système, lubrifiant la surface des circuits de billes par action capillaire. Un supplément d'huile est également appliqué au circuit de billes par le polymère. Pour une protection accrue, l'ensemble comprend un kit de graisse EP2. Aucune maintenance ou lubrification supplémentaire n'est nécessaire pendant toute la durée de vie des roulements lubrifiés à partir du bloc de lubrification. Le bloc de lubrification Type 531LL est compatible avec d'autres accessoires modulaires en option, ce qui permet d'améliorer sans difficulté l'efficacité des joints standard. Cette option peut être facilement installée sur site ou ajoutée en usine.

Soufflets

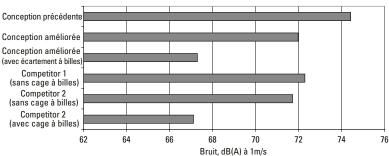
Des **soufflets standard** sont disponibles pour tous les ensembles. Les soufflets couvrent toute la longueur du rail. Ils assurent une protection supplémentaire contre la poussière, les saletés et les éclaboussures de liquides. Leur installation est simple et rapide. Il est possible de les ajouter ultérieurement lorsque les extrémités des rails sont percées pour la fixation de la plaque d'extrémité 531. Il existe trois styles de soufflets :

- Type B « Low Profile » (Discret), dont les cotes externes ne dépassent pas le chariot;
- Type C « High Compression » (Haute compression);
- Type W « Walk On », capable de supporter les environnements les plus difficiles avec une capacité de charge des roulements de 90 kg.

Les soufflets sont compatibles avec les autres joints modulaires en option, ce qui permet d'améliorer sans difficulté l'efficacité des joints standard. Cette option peut être installée sur site ou ajoutée en usine.

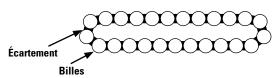
Remarque : l'ajout d'accessoires modulaires augmente la capacité d'entraînement de l'ensemble chariot, entraînant plus de frottements et une plus grande consommation d'énergie.

À écartement de billes Série 500

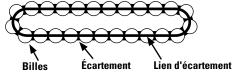

Les chariots guidage à billes sur rail Série 500 sont désormais disponibles avec des éléments d'écartement de billes qui diminuent fortement le bruit de fonctionnement du chariot. Les chariots à écartement de billes sont disponibles en taille 20, 25, 30, 35 et 45. Il s'agit d'une substitution aux chariots à billes actuels, toutes les côtes externes des chariots étant identiques.

Le bruit est réduit grâce à l'insertion de disques en plastique entre chaque roulement à billes. Le bruit est moindre car les billes ne sont plus en contact et ne peuvent plus heurter la gorge de roulement à billes. L'ajout des disques en plastique nécessite un nombre réduit de billes à capacité de charge, entraînant ainsi une légère réduction des capacités de charge statique et dynamique du chariot à écartement de billes.

Caractéristiques et avantages :

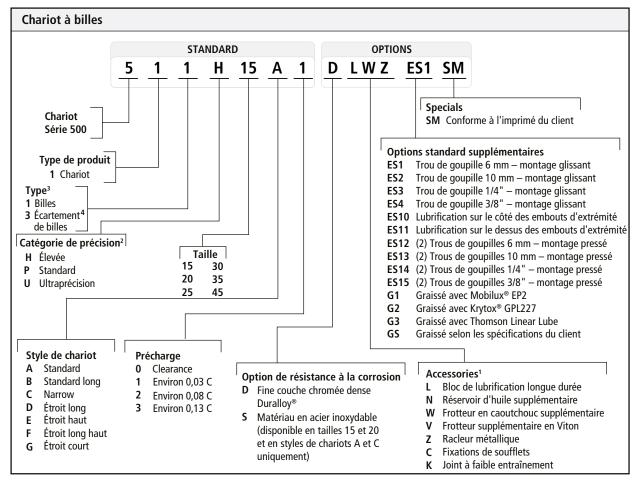

- Réduction importante du bruit (-6 dB)
- Réduction minimum de la capacité de charge dynamique et statique. Contactez les ingénieurs spécialisés de Thomson pour plus d'informations sur la capacité de charge
- Substitution aux chariots à billes 511
- Options d'accessoires identiques à celles des chariots à billes 511
- Performances identiques ou supérieures par rapport à la force de poussée et au bruit des produits proposés par les concurrents
- Désignation du type de chariot : 513

Mesure du bruit, chariot 35mm



Comparaison de la technologie d'écartement de billes

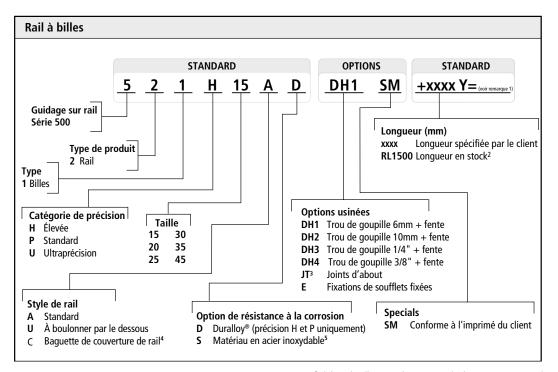
Écartement de billes Thomson



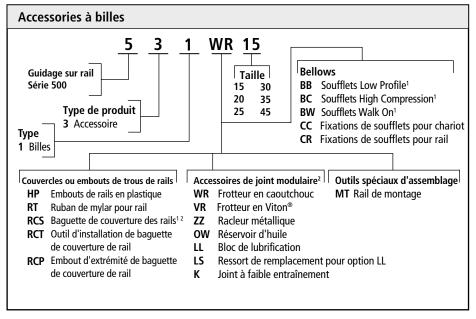
Chaîne à billes proposée par les concurrents

	Écartement de billes Thomson 513	Chaîne à billes proposée par les concurrents
Forces internes	Absence de charge de traction	Charge de traction sur les liens d'écartement
Qualité	Inspection automatique de chaque élément d'écartement	Inspection visuelle possible uniquement en courbant le lien
Jeu entre les billes	Tout jeu entre les billes et l'écartement est minimisé lors de l'assemblage	La tolérance de liens d'écartement entraîne des jeux imprécis
Force de poussée	Légère augmentation de la force de poussée	Augmentation importante de la force de poussée
Fiabilité	Moins d'éléments = moins de modes de défaillance	Des éléments de liens endommagés peuvent bloquer le circuit de recirculation

Composition de la référence

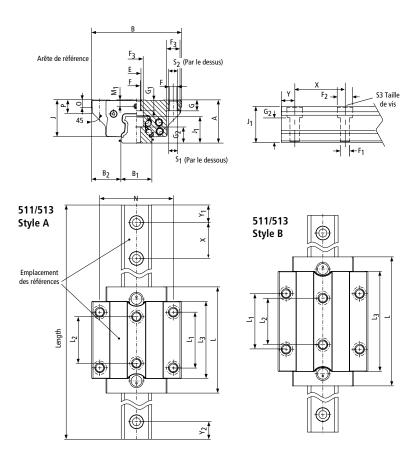


- Les références de combinaisons d'accessoires sont répertoriées à partir de l'embout de chariot standard. Certaines combinaisons ne sont pas disponibles. Pour connaître la disponibilité de combinaisons précises, voir pages 35 et 36.
- 2. La qualité de précision la plus faible pour les billes Série 500 est élevée grâce aux contrôles de fabrication et aux capacités de polissage rigoureux. Nous ne proposons pas de qualité de précision normale, notre qualité élevée correspond à notre qualité normale.
- Les nouveaux chariots améliorés ne conservent pas de roulements à billes lorsque l'embout d'extrémité est retiré. Le retrait des embouts d'extrémité peut entraîner la perte des roulements à billes.
- Les chariots à écartements de billes ne sont pas disponibles en taille 15.


Des ensembles sont disponibles, reportez-vous à la page 120 pour obtenir les références détaillées de ces ensembles.

Composition de la référence

- Y=Distance séparant l'extrémité du rail du centre du premier trou de montage, Y1 = Y2 sauf autre spécification.
- Les longueurs de rails en stock sont des longueurs variables: la longueur peut dépasser la longueur spécifiée et Y1/Y2 ne sont pas identiques. À utiliser par le client, qui coupe à la longueur souhaitée.
- Schéma du client requis pour tout devis et toute commande.
 Pour obtenir plus d'informations et des modèles, voir page 140.
- Baguette de couverture des rails disponible en tailles 25 et supérieures uniquement.
- 5. Disponible en tailles 15 et 20 uniquement. Longueur maximale de rail 1 000 mm.



- La commande doit comporter la longueur des soufflets et de la baguette de couverture des rails. Exemple: 531BB15 + 1 000 mm. Pour obtenir la méthode de calcul de la longueur des soufflets, voir page 138.
- 1. La commande doit comporter la longueur des soufflets et de la baguette 2. Baguette de couverture des rails disponible en tailles 25 et supérieures uniquement.
 - 3. Deux vis standard sont fournies avec chaque élément. Les vis servent à installer l'accessoire sur le chariot et non des combinaisons d'accessoires.

Des ensembles sont disponibles, reportez-vous à la page 120 pour obtenir les références détaillées de ces ensembles.

511/513 Styles A et B

511/513[†] Style A – Bille standard

Taille	CO A	tes (m B +0,0 –0,4	B ₁ *	В2	J	J ₁	L	կ	L ₂	L ₃	Х	N	s ₁	s ₂	s ₃	F	F ₁	F ₂	F ₃	Bille Ø	G	G ₁	G ₂	М1	0	Р
15	24	47	15	16	20,2	15,7	56,6	30	26	39,6	60	38	M 4	M 5	M 4	4,4	4,5	8	7,5	3,2	7	4,5	9,5	4	7	7
20	30	63	20	21,5	25,5	19	71,5	40	35	49,5	60	53	M 5	M 6	M 5	5,4	5,8	10	9,5	40	8	6,5	11,5	5,2	8	8
25	36	70	23	23,5	30,5	22,7	84,5	45	40	59,5	60	57	M 6	M 8	M 6	6,8	7	11	11	4,8	9	8,7	14	5,5	7	11
30	42	90	28	31	35,9	26	97,4	52	44	69,4	80	72	M 8	M 10	M 8	8,5	9	15	15	5,6	12	10	14,5	7	8	12
35	48	100	34	33	41	29,5	111,6	62	52	79,6	80	82	M 8	M 10	M 8	8,5	9	15	15	6,4	12	12	18	7	8	14
45	60	120	45	37,5	50,8	37	137,1	80	60	99,1	105	100	M 10	M 12	M 12	10,5	14	20	18	7,9	15	15	22	8	10	17,5

511/513[†] Style B – Bille longue standard

Taille	CO A	tes (m B +0,0 –0,4	m) B ₁ * ±0,05	В2	J	J ₁	L	L ₁	L ₂	L ₃	X	N	s ₁	s ₂	s ₃	F	F ₁	F ₂	F ₃	Bille Ø	G	G ₁	G ₂	M ₁	0	P
20	30	63	20	21,5	25,5	19	87,5	40	35	65,5	60	53	M 5	M 6	M 5	5,4	5,8	10	9,5	4,0	8	6,5	11,5	5,2	8	8
25	36	70	23	23,5	30,5	22,7	103,5	45	40	78,5	60	57	M 6	M 8	M 6	6,8	7	11	11	4,8	9	8	14	5,5	7	11
30	42	90	28	31	35,9	26	119,4	52	44	91,4	80	72	M 8	M 10	M 8	8,5	9	15	15	5,6	12	10	14,5	7	8	12
35	48	100	34	33	41	29,5	137,1	62	52	105,1	80	82	M 8	M 10	M 8	8,5	9	15	15	6,4	12	12	18	7	8	14
45	60	120	45	37,5	50,8	37	168,6	80	60	130,6	105	100	M 10	M 12	M 12	10,5	14	20	18	7,9	15	15	22	8	10	17,5

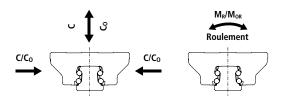
^{*} Tolérance standard. Tolérances spéciales inférieures disponibles à la demande. Pour plus d'informations, consultez l'un de nos ingénieurs spécialisés.

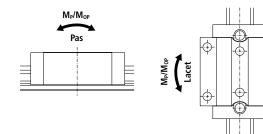
t Les écartements de billes 513 ne sont pas disponibles en taille 15.

511 Styles A et B

Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique


M_P = Amplitude de moment de lacet et de pas dynamique


M_R = Amplitude de moment de roulement dynamique

Amplitudes de moment et capacités de charge statiques

 C_0 = Capacité de charge statique M_{0P} = Amplitude de moment de lacet et de pas statique

M_{OR} = Amplitude de moment de roulement dynamique

					Capac	ité de ch	arge				Poi	ds
Style			Statique				Dyna	mique			Chariot	Rail
511 1	Taille		Junque			100 km			50 km		Charlot	Naii
		C _O (N)	M _{OR} (Nm)	M _{OP, OY} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	(kg)	(kg/m)
	15	19 600	181	146	9 000	83	67	11 339	105	84	0.2	1.4
	15-S	19 600	181	146	7 600	70	57	9 576	88	72	0.2	1.4
	20	31 400	373	292	14 400	171	134	18 143	215	169	0.5	2.2
Ι ,	20-S	31 400	373	292	12 000	143	112	15 120	180	141	0.5	2.2
^	25	46 100	631	513	21 100	289	235	26 584	364	296	0.7	3.0
	30	63 700	1 084	829	29 200	497	380	36 790	626	479	1.2	4.3
	35	84 400	1 566	1 252	38 700	718	574	48 759	905	723	1.8	5.4
	45	134 800	3 193	2 498	61 900	1 466	1 147	77 989	1 847	1 445	3.3	8.8
	20	41 100	490	495	17 400	206	208	21 923	260	262	0.6	2.2
	25	60 300	825	863	25 500	349	365	32 128	440	460	0.9	3.0
В	30	83 300	1 414	1 390	35 300	599	589	44 475	755	742	1.5	4.3
	35	110 300	2 048	2 104	46 700	867	891	58 838	1 092	1 123	2.3	5.4
	45	176 300	4 175	4 199	74 700	1 769	1 779	94 116	2 229	2 241	4.2	8.8

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur la durée de vie spécifiée dans le tableau (100 km ou 50 km). Lorsque vous comparez ces capacités de charge à celles d'autres roulements, vous devez tenir compte de la durée de vie appropriée.
- 2. Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.
- 3. Pour plus d'informations sur les capacités de charge de l'écartement de billes 513, contactez les ingénieurs spécialisés de Thomson.

Comparaison de la durée de vie des roulements

 $L = (C/F)^3 \times 100 \text{km}$ où:

L = durée de vie, km Cmin = capacité de charge C = capacité de charge dynamique minimum requise, N dynamique 100 km F = charge dynamique

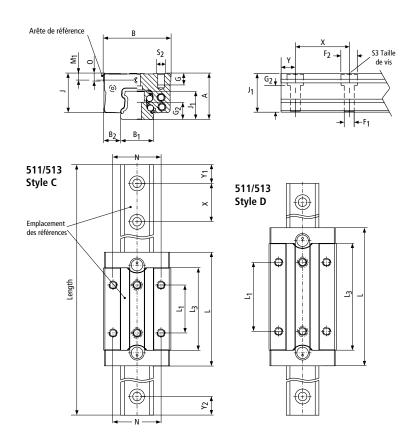
F = charge dynamique appliquée, N

appliquée, N L = durée de vie requise, km Paramètres de fonctionnement :

Vitesse maximum: 5 m/s Accélération maximum : 100 m/s²

Température : Min.: -40°C

> Max.: 80°C


Pointe max. :120°C courte durée*

*sans soufflet

Facteurs de conversion : Voir page 124

511/513 Styles C et D

511/513[†] Style C étroit

Taille	A	otes (mr B +0,0 –0,4	n) B ₁ * +0,05	В2	J	J ₁	L	Ц	L ₃	Х	N	S ₂ /S ₃	F ₁	F ₂	Billes Ø	G	G ₂	М ₁	0
15	24	34	15	9,5	20,2	15,7	56,6	26	39,6	60	26	M 4	4,5	8	3,2	5	9,5	4	5,5
20	30	44	20	12	25,5	19	71,5	36	49,5	60	32	M 5	5,8	10	4,0	7	11,5	5,2	6
25	36	48	23	12,5	30,5	22,7	84,5	35	59,5	60	35	M 6	7	11	4,8	9	14	5,5	7,5
30	42	60	28	16	35,9	26	97,4	40	69,4	80	40	M 8	9	15	5,6	11	14,5	7	8
35	48	70	34	18	41	29,5	111,6	50	79,6	80	50	M 8	9	15	6,4	12	18	7	8

511/513[†] Style C étroit long

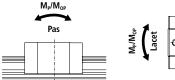
Taille	A	cotes (mn B +0,0 –0,4	n) B ₁ * +0,05	В2	J	J ₁	L	L ₁	L ₃	х	N	S ₂ /S ₃	F ₁	F ₂	Billes Ø	G	G ₂	M ₁	0
20	30	44	20	12	25,5	19	87,5	50	65,5	60	32	M 5	5,8	10	4,0	7	11,5	5,2	6
25	36	48	23	12,5	30,5	22,7	103,5	50	78,5	60	35	M 6	7	11	4,8	9	14	5,5	7,5
30	42	60	28	16	35,9	26	119,4	60	91,4	80	40	M 8	9	15	5,6	11	14,5	7	8
35	48	70	34	18	41	29,5	137,1	72	105,1	80	50	M 8	9	15	6,4	12	18	7	8

^{*} Tolérance standard. Tolérances spéciales inférieures disponibles à la demande. Pour plus d'informations, consultez l'un de nos ingénieurs spécialisés. t Les écartements de billes 513 ne sont pas disponibles en taille 15.

511 Styles C et D

Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique


M_P = Amplitude de moment de lacet et de pas dynamique M_R = Amplitude de moment de roulement dynamique

$M_{\text{R}}/M_{\text{OR}}$ Roulement

Amplitudes de moment et capacités de charge statiques

C_o = Capacité de charge statique

 M_{OP} = Amplitude de moment de lacet et de pas statique Mor = Amplitude de moment de roulement dynamique

					Capac	ité de ch	arge				Poi	ds
Style			Statique				Dyna	mique			Chariot	Rail
511	Taille					100 km			50 km		Charlot	Ran
J		Co (N)	M _{OR} (Nm)	M _{OP, OY} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	(kg)	(kg/m)
	15	19 600	181	146	9 000	83	67	11 339	105	84	0.2	1.4
	15-S	19 600	181	146	7 600	70	57	9 576	88	106	0.2	1.4
	20	31 400	373	292	14 400	171	134	18 143	215	169	0.5	2.2
С	20-S	31 400	373	292	12 000	143	112	15 120	180	141	0.5	2.2
	25	46 100	631	513	21 100	289	235	26 584	364	296	0.7	3.0
	30	63 700	1 084	829	29 200	497	380	36 790	626	479	1.2	4.3
	35	84 400	1 566	1 252	38 700	718	574	48 759	905	723	1.8	5.4
	20	41 100	490	495	17 400	206	208	21 923	260	262	0.6	2.2
D	25	60 300	825	863	25 500	349	365	32 128	440	460	0.9	3.0
	30	83 300	1 414	1 390	35 300	599	589	44 475	755	742	1.5	4.3
	35	110 300	2 048	2 104	46 700	867	891	58 838	1 092	1 123	2.3	5.4

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur la durée de vie spécifiée dans le tableau (100 km ou 50 km). Lorsque vous comparez ces capacités de charge à celles d'autres roulements, vous devez tenir compte de la durée de vie appropriée.
- 2. Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.
- 3. Pour plus d'informations sur les capacités de charge de l'écartement de billes 513, contactez les ingénieurs spécialisés de Thomson.

Comparaison de la durée de vie des roulements

 $C_{\min} = F\left(\frac{L}{100}\right)^{1/3}$ $L = (C/F)^3 \times 100 \text{km}$ où:

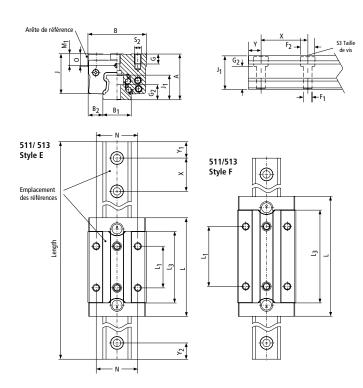
L = durée de vie, km C_{min} = capacité de charge C = capacité de charge dynamique minimum requise, N dynamique 100 km F = charge dynamique

F = charge dynamique appliquée, N

appliquée, N L = durée de vie requise, km Paramètres de fonctionnement :

Vitesse maximum: 5 m/s Accélération maximum : 100 m/s²

Température : Min.: -40°C


Max: 80°C

Pointe max. : 120°C courte durée* *sans soufflet

Facteurs de conversion : Voir page 124

511/513 Styles E et F

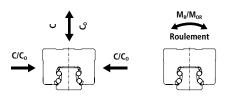
511/513[†] Style E étroit élevé

Taille	A	otes (mr B +0,0 -0,4	n) B ₁ * +0,05	В2	J	J ₁	L	L ₁	L ₃	Х	N	S ₂ /S ₃	F ₁	F ₂	Billes Ø	G	G ₂	M ₁	0
15	28	34	15	9,5	24,2	15,7	56,6	26	39,6	60	26	M 4	4,5	8	3,2	6	9,5	8	6
25	40	48	23	12,5	34,5	22,7	84,5	35	59,5	60	35	M 6	7	11	4,8	9	14	9,5	11
30	45	60	28	16	38,9	26	97,4	40	69,4	80	40	M 8	9	15	5,6	11	14,5	10	11
35	55	70	34	18	48	29,5	111,6	50	79,6	80	50	M 8	9	15	6,4	12	18	14	15
45	70	86	45	20,5	60,8	37	137,1	60	99,1	105	60	M 10	14	20	7,9	18	22	18	19

511/513[†] Style F étroit long élevé

Taille	A	otes (mr B +0,0 -0,4	n) B ₁ * +0,05	В2	J	J ₁	L	L ₁	L ₃	Х	N	s ₂ /s ₃	F ₁	F ₂	Billes Ø	G	G ₂	M ₁	0
25	40	48	23	12,5	34,5	22,7	103,5	50	78,5	60	35	M 6	7	11	4,8	9	14	9,5	11
30	45	60	28	16	38,9	26	119,4	60	91,4	80	40	M 8	9	15	5,6	11	14,5	10	11
35	55	70	34	18	48	29,5	137,1	72	105,1	80	50	M 8	9	15	6,4	12	18	14	15
45	70	86	45	20,5	60,8	37	168,6	80	130,6	105	60	M 10	14	20	7,9	18	22	18	19

Tolérance standard. Tolérances spéciales inférieures disponibles à la demande. Pour plus d'informations, consultez l'un de nos ingénieurs spécialisés. Les écartements de billes 513 ne sont pas disponibles en taille 15.



511 Styles E et F

Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique


 $M_{\text{P}}=$ Amplitude de moment de lacet et de pas dynamique $M_{\text{R}}=$ Amplitude de moment de roulement dynamique

Amplitudes de moment et capacités de charge statiques

C₀ = Capacité de charge statique

 $M_{\text{OP}} = \text{Amplitude}$ de moment de lacet et de pas statique $M_{\text{OR}} = \text{Amplitude}$ de moment de roulement dynamique

					Capac	ité de ch	arge				Poi	ds
Style			Statique				Dynai	mique			Chariot	Rail
511	Taille		Junque			100 km			50 km		Charlot	Itali
	lunic	C _O (N)	M _{OR} (Nm)	M _{OP, OY} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	(kg)	(kg/m)
	15	19 600	181	146	9 000	83	67	11 339	105	84	0.2	1.4
	25	46 100	631	513	21 100	289	235	26 584	364	296	0.5	2.2
E	30	63 700	1 084	829	29 200	497	380	36 790	626	479	0.7	3.0
_	35	84 400	1 566	1 252	38 700	718	574	48 759	905	723	1.2	4.3
	45	134 800	3 193	2 498	61 900	1 466	1 147	77 989	1 847	1 445	1.8	5.4
	25	60 300	825	863	25 500	349	365	32 128	440	460	0.6	2.2
F	30	83 300	1 414	1 390	35 300	599	589	44 475	755	742	0.9	3.0
^r	35	110 300	2 048	2 104	46 700	867	891	58 838	1 092	1 123	1.5	4.3
	45	176 300	4 175	4 199	74 700	1 769	1 779	94 116	2 229	2 241	2.3	5.4

- Les amplitudes de moment et les capacités de charge dynamiques sont basées sur la durée de vie spécifiée dans le tableau (100 km ou 50 km). Lorsque vous comparez ces capacités de charge à celles d'autres roulements, vous devez tenir compte de la durée de vie appropriée.
- Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.
- 3. Pour plus d'informations sur les capacités de charge de l'écartement de billes 513, contactez les ingénieurs spécialisés de Thomson.

Calcul de la durée de vie des roulements

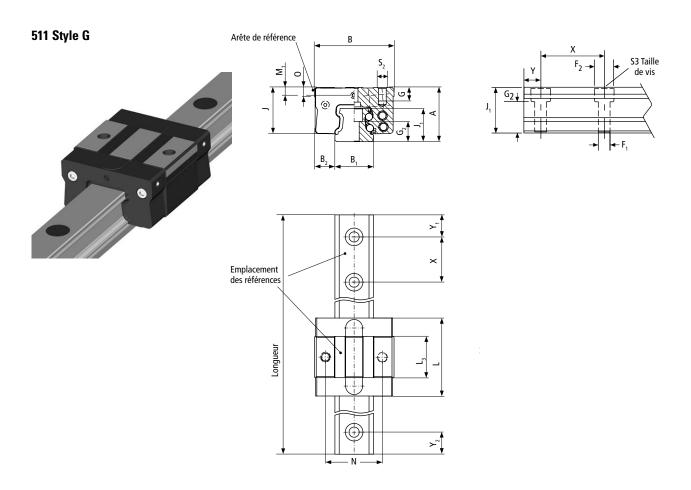
L = $(C/F)^3$ x 100km $C_{min} \left(\frac{L}{100}\right)^{1/3} = F$

où: oi

F = charge dynamique appliquée, N

appliquée, N L = durée de vie requise, km

Paramètres de fonctionnement :


Température : Min. : -40°C

Max: 80°C

Pointe max. : 120°C courte durée*

*sans soufflet

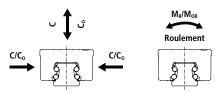
Facteurs de conversion : Voir page 124

511 Style G étroit court

Taille	A	B +0,0 -0,4	cotes (mm B ₁ * +0,05) B ₂	J	J ₁	L	L ₃	X	N	s ₂ /s ₃	F ₁	F ₂	Bille Ø	G	G ₂	M ₁	0
15	24	34	15	9,5	20,2	15,7	37,6	20,6	60	26	M4	4,5	8	3,2	6	9,5	4	6
20	28	44	20	12	23,5	19	47,7	25,7	60	32	M5	5,8	10	4,0	6	11,5	4,2	4

^{*} Tolérance standard. Tolérances spéciales inférieures disponibles à la demande. Pour plus d'informations, consurtez i un ue nus ingenieurs specialisses.

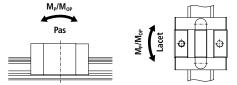
** Lorsque vous utilisez des plaques de lubrification ou des joints modulaires supplémentaires, la longueur totale L augmente. Pour plus d'informations, voir page 35-36.


511 Style G

Amplitudes de moment et capacités de charge dynamiques

= Capacité de charge dynamique

M_P = Amplitude de moment de lacet et de pas dynamique


M_R = Amplitude de moment de roulement dynamique

Amplitudes de moment et capacités de charge statiques C₀ = Capacité de charge statique

M_{OP} = Amplitude de moment de lacet et de pas statique

M_{OR} = Amplitude de moment de roulement dynamique

					Capac	ité de ch	arge				Poi	ds
			C4-4:				Dynai	mique			a	
Style	Taille		Statique			100 km			50 km		Chariot	Rail
Style	Co Mor Mor, o			M _{OP, OY} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	C (N)	M _R (Nm)	M _{P, Y} (Nm)	(kg)	(kg/m)
G	15	8 500	78	30	5 200	48	18	6 552	60	23	0.2	1.4
	20	13 100	150	58	8 400	99	37	10 583	125	47	0.5	2.2

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur la durée de vie spécifiée dans le tableau (100 km ou 50 km). Lorsque vous comparez ces capacités de charge à celles d'autres roulements, vous devez tenir compte de la durée de vie appropriée.
- 2. Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.

Calcul de la durée de vie des roulements

 $C_{min} = F \left(\frac{L}{100}\right)^{1/3}$ $L = (C/F)^3 \times 100 \text{km}$

où:

L = durée de vie, km C_{min} = capacité de charge C = capacité de charge dynamique minimum requise, N dynamique 100 km F = charge dynamique

F = charge dynamique appliquée, N

appliquée, N L = durée de vie requise, km Paramètres de fonctionnement :

Vitesse maximum: 5 m/s Accélération maximum : 100 m/s²

Température : Min.: -40° C Max: 80° C

Pointe max. : 120°C courte durée*

*sans soufflet

Facteurs de conversion : Voir page 124

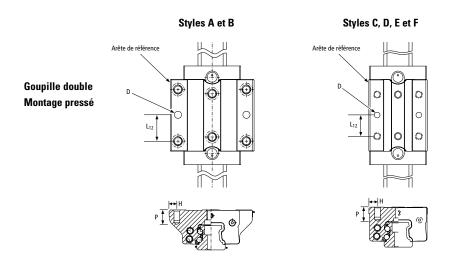
Trous de goupilles pour chariots

Des trous de goupilles sont généralement utilisés pour assurer l'alignement correct des chariots et des rails lors de leur installation et remplacement. Les options de trous de goupilles à montage glissant standard pour les chariots à billes standard de la série 500 sont les suivantes :

Goupille unique Montage glissant

Styles A et B

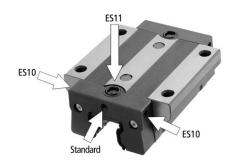
Styles C, D, E et F


51	1			ES1			ES2			ES3			ES4	
Style	Taille	L ₁₂	ØD	Н	P	ØD	Н	P	ØD	Н	P	ØD	Н	P
	15 20	15 20	6 6	4,5 5	7 9	_ _	_ _	_ _	1/4" 1/4"	4,5 5	7 9	_ _	_	-
Type A	25 30 35	22,5 26 31	6 6 -	6,5 9 —	9 12 -	- 10 10	- 9 9	- 12 14	1/4" 1/4" —	6,5 9 –	9 12 -	- 3/8" 3/8"	- 9 9	- 12 14
	45	40	_	_	_	10	10	18	_	_	_	3/8"	10	18
	20 25	20 22,5	6	5 6,5	9	- -	-	- -	1/4" 1/4"	5 6,5	9	- -	-	-
Type B	30 35 45	26 31 40	6 - -	9 - -	12 - -	10 10 10	9 9 10	12 14 18	1/4" — —	9 - -	12 - -	3/8" 3/8" 3/8"	9 9 10	12 14 18
Type C	15 20 25	13 18 17,5	6 6 6	4 6 6,5	6 9 9	- - -	- - -	- - -	1/4" 1/4" 1/4"	4 6 6,5	6 9 9	- - -	- -	- - -
Type C	30 35	20 25	6 -	10 –	12 -	10 10	10 10	12 12	1/4"	10 –	12 -	3/8" 3/8"	10 10	12 12
T D	20 25	25 25	6 6	6 6,5	9 9	- - 10	- -	- -	1/4" 1/4"	6 6,5	9 9	- - 2/0#	- -	- -
Type D	30 35	30 36	6 –	10 -	12 -	10 10	10 10	12 12	1/4"	10 -	12 -	3/8" 3/8"	10 10	12 12
Type E	15 25	13 17,5	6 6	4 6,5	6 9	- -	_ _	- -	1/4" 1/4"	4 6,5	6 9	- -	-	-
	30 35 45	20 25 30	6 - -	10 - -	12 - -	10 10 10	10 10 13	12 12 12	1/4" — —	10 - -	12 - -	3/8" 3/8" 3/8"	10 10 13	12 12 12
Type F	25 30 35	25 30 36	6 6 -	6,5 10 –	9 12 –	- 10 10	- 10 10	- 12 12	1/4" 1/4" –	6,5 10 –	9 12 -	- 3/8" 3/8"	- 10 10	- 12 12
	45	40	_	-	-	10	13	12	_	-	-	3/8"	13	12

Toutes les cotes sont exprimées en mm, sauf spécification contraire.

Tolérance de trou φD +0,013/-0

Trous de goupilles pour chariots (suite)



511				ES12			ES13			ES14			ES15	
Style	Taille	L ₁₂	ØD	Н	P	ØD	Н	P	ØD	Н	P	ØD	Н	P
Туре А	15 20 25 30 35 45	15 20 22,5 26 31 40	6 6 6 -	4,5 5 6,5 9 –	7 9 9 12 –	- - 10 10	- - 9 9	- - 12 14	1/4" 1/4" 1/4" 1/4" –	4,5 5 6,5 9 –	7 9 9 12 -	- - - 3/8" 3/8" 3/8"	- - 9 9	- - 12 14 18
Туре В	20 25 30 35 45	20 22,5 26 31 40	6 6 6 -	5 6,5 9 - -	9 9 12 -	- - 10 10 10	- - 9 9	- - 12 14 18	1/4" 1/4" 1/4" –	5 6,5 9 –	9 9 12 - -	3/8" 3/8" 3/8"	- - 9 9	- 12 14 18
Туре С	15 20 25 30 35	13 18 17,5 20 25	6 6 6 6	4 6 6,5 10	6 9 9 12	- - - 10 10	- - - 10 10	- - - 12 12	1/4" 1/4" 1/4" 1/4"	4 6 6,5 10	6 9 9 12	- - - 3/8" 3/8"	- - - 10 10	- - 12 12
Type D	20 25 30 35	25 25 30 36	6 6 6 -	6 6,5 10 –	9 9 12 –	- - 10 10	- 10 10	- - 12 12	1/4" 1/4" 1/4" –	6 6,5 10 –	9 9 12 –	- 3/8" 3/8"	- 10 10	- 12 12
Туре Е	15 25 30 35 45	13 17,5 20 25 30	6 6 6 6	4 6,5 10 10 13	6 9 12 12 12	- 10 10 10	- 10 10 13	- 12 12 12	1/4" 1/4" 1/4" 1/4" 1/4"	4 6,5 10 10 13	6 9 12 12 12	- 3/8" 3/8" 3/8"	- 10 10 13	- 12 12 12
Type F	25 30 35 45	25 30 36 40	6 6 - -	6,5 10 –	9 12 - -	- 10 10 10	- 10 10 13	- 12 12 12	1/4" 1/4" – –	6,5 10 –	9 12 - -	- 3/8" 3/8" 3/8"	- 10 10 13	- 12 12 12

Toutes les cotes sont exprimées en mm, sauf spécification contraire. Tolérance de trou $\,\phi\,D$ +0,013/-0

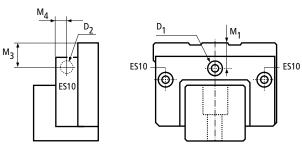
Options d'orifices de lubrification

Le chariot standard est doté d'un orifice de lubrification centré sur le rail. Le chariot comporte plusieurs options d'orifices de lubrification. Ces options peuvent être facilement modifiées sur site ou ajoutées directement en usine.(L'orifice standard est M3 pour 15 mm, M6 pour 20 mm, 25 mm, 30 mm, 35 mm, 45 mm). Voir les composants de lubrification disponibles page 70.

Options ES10 et standard d'emplacement d'orifice de lubrification.

Taille	Style	M1	M3	M4	D1	D2
	A	4	4			
15	С			4	М3	M3
	E	8	8			
	G	4	4			
	A					
20	В	5.2	5.2	5.2	M6	М3
	С					5
	D					
	G	4.2	4.2	5	M3	M3
	Α					
	В	5.5	5.5			
25	C	3.3	5.5		M6	MC
25	D			6	IVIO	M6
	Е					
	F	9.5	9.5			
	Α					
	В					
	С	7	7			
30	D			6	M6	M6
	Е					
	F	10	10			
	Α					
	В	7	7			
	С	/	/			
35	D			6	M6	M6
	Е					
	F	14	14			
	A					
	В	8	8			
45	E F	18	18	7.5	M6	M6

Toutes les cotes sont exprimées en mm, sauf spécification contraire.


Option

ES10 Orifices sur le côté, aux deux extrémités, sur tous les côtés

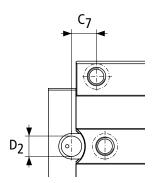
ES11 Orifice sur le dessus*, aux deux extrémités

Remarques:

- *Un joint torique est requis pour joindre correctement les surfaces d'ajustement afin d'éviter les fuites de graisse ou d'huile.
 Un joint torique est fourni avec cette option.
 Taille 15 ID joint torique M3x1,78 mm d'épaisseur.
 Taille 20-45 ID joint torique M6x1,78 mm d'épaisseur.
- 2. La vis de pression est installée dans l'orifice d'entrée standard lorsque les options ES10 et ES11 sont spécifiées.
- Les orifices situés sur le côté et le dessus sont des embouts pleins.
 Lors de la modification sur site, ces orifices doivent être percés pour être utilisés.

- D1 et D2 sont des orifices filetés présents dans l'embout d'extrémité pour assurer l'intégrité et la durabilité appropriées de la connexion.
- 2. Les chariots sont expédiés avec un dispositif de graissage dans l'emballage.

La taille 15 comprend des dispositifs 530LF3, les tailles 20 et supérieures 530LN.


Voir page 70 pour plus d'informations.

Option ES11 d'emplacement d'orifice de lubrification

Taille	Style	С7	D1	D2	D3	D4
	Α	8.000				
15	С	10.000	4.47	8	1.78	4
	E	10.000				
	Α	10.500				
20	B C	18.500	6.75	10	1.78	6
20	C	12.500	0.75	10	1.70	U
	D	13.500				
	Α	13.200				
	В	22.700				
25	С	18.200				
23	D	20.200	8.75	12	1.78	8
	E	18.200				
	F	20.200				
	Α	13.200				
	В	22.700				
30	С	18.200	8.75	12	1.78	8
30	D	20.200	8.75	12	1./8	ŏ
	E	18.200				
	F	20.200				
	Α	14.500				
	В	27.250				
35	С	20.500	8.75	12	1.78	8
33	D	22.250	0.75	12	1.70	0
	E	20.500				
	F	22.250				
	Α	17.000				
45	В	32.750	8.75	12	1.78	8
45	E	27.000	0./5	12	1./8	6
	F	32.750				

Toutes les cotes sont en mm.

D1 = Diamètre interne du joint torique

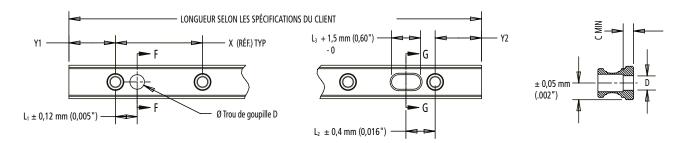
D2 = Diamètre de l'avant-trou

D3 = Épaisseur du joint torique

D4 = Diamètre maximum recommandé de l'orifice de lubrification vu de dessus

Graisses

Les chariots standard sont vendus enduits d'un conservateur gras destiné à protéger les billes contre la corrosion pendant le stockage et le transport. Les chariots sont disponibles avec l'ensemble de lubrifiants suivant. D'autres graisses sont disponibles à la demande. Consultez les ingénieurs spécialisés de Thomson.


Option	Туре	Remarques	Viscosité	Plage de températures
G1	Mobilux® EP2	Graisse NLGI2 tout usage	160 cSt @40 °C	−20 °C à 130 °C
G2	Krytox® GPL227	Haute température NLGI2	440 cSt @40 °C	−30 °C à 288 °C
G3	Thomson LinearLube	Graisse NLGI2 classe alimentaire	350 cSt @40 °C	−54 °C à 230 °C
GS	Spécifié par le client à l	a commande		

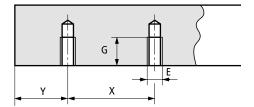
Longueur de rail

Longueur maximum d'un rail d'une pièce

Taille (mm)	15	20	25	30	35	45
Longueur de rail une pièce	1 500mm	3000mm		6000)mm	

Options de rails standard supplémentaires

Option	D	L1	L2	L3	С
DH1	6 mm	30 mm	30 mm	10,2 mm	9,5 mm
DH2	10 mm	30 mm	30 mm	13,8 mm	9,5 mm
DH3	1/4"	1,181"	1,181"	0,542"	3/8"
DH4	3/8"	1,181"	1,181"	0,542"	3/8"


Y1 = Y2 sauf spécification contraire à la commande

Le rail peut être doté de trous de goupilles, de trous radiaux ou de trous coaxiaux selon les besoins de votre application. N'hésitez pas à nous soumettre un schéma de vos besoins. Notre équipe d'ingénieurs spécialisés établira alors un devis ou sélectionnera l'une de nos options standard supplémentaires.

^{*}Pour les tailles 25 et plus, un pas est présent autour du bas de la fente afin de contrôler la tolérance de largeur pendant le fraisage de la fente.

Rail 521 Type U -Fixation par le dessous

Taille	Х	E	G (mm)	Poids (kg/m)
15	60	M5	8	1,4
20	60	M6	10	2,2
25	60	M6	12	3
30	80	M8	15	4,3
35	80	M8	15	5,4
45	105	M12	19	8,8

Le client précisera les cotes Y à la commande. $Y_1 = Y_2$ si aucune cote n'est spécifiée

Fine couche chromée dense

Les rails et les chariots sont revêtus d'une fine couche chromée dense d'une épaisseur de 2 à 4µm. Conséquence de cette plage d'épaisseur par rapport aux plages de tolérance dans les différentes catégories de précision, les rails ne sont disponibles qu'en une seule pièce mesurant jusqu'à 3 mètres de long dans les catégories de précision Haute et Standard. Les longueurs supérieures peuvent être assemblées bout à bout.

Gamme de chariots avec fine couche chromée dense

						Précharge	
Туре	Style	Taille	Précision	Jeu	0,03C	0,08C	0,13C
		15	Н	511H15A0D	511H15A1D	511H15A2D	-
			P	,	511P15A1D	511P15A2D	511P15A3D
		20	Н	511H20A0D	511H20A1D	511H20A2D	-
		20	P	-	511P20A1D	511P20A2D	511P20A3D
		25	Н	511H25A0D	511H25A1D	511H25A2D	-
	l A	25	P	,	511P25A1D	511P25A2D	511P25A3D
	A	30	Н	511H30A0D	511H30A1D	511H30A2D	-
		30	Р	-	511P30A1D	511P30A2D	511P30A3D
	l [35	н	511H35A0D	511H35A1D	511H35A2D	-
		33	P	,	511P35A1D	511P35A2D	511P35A3D
	[45	Н	511H45A0D	511H45A1D	511H45A2D	-
		45	P	-	511P45A1D	511P45A2D	511P45A3D
		20	Н	511H20B0D	511H20B1D	511H20B2D	-
			Р		511P20B1D	511P20B2D	511P20B3D
511		25	Н	511H25B0D	511H25B1D	511H25B2D	-
311			P	-	511P25B1D	511P25B2D	511P25B3D
	l _B	30	Н	511H30B0D	511H30B1D	511H30B2D	-
	ا ٽا		P	-	511P30B1D	511P30B2D	511P30B3D
	l [35	Н	511H35B0D	511H35B1D	511H35B2D	-
		33	P	-	511P35B1D	511P35B2D	511P35B3D
		45	Н	511H45B0D	511H45B1D	511H45B2D	-
		45	Р	-	511P45B1D	511P45B2D	511P45A3D
			Н	511H15C0D	511H15C1D	511H15C2D	-
		15	Р	-	511P15C1D	511P15C2D	511P15C3D
	1 1		Н	511H20C0D	511H20C1D	511H20C2D	-
	ا ہا	20	Р		511P20C1D	511P20C2D	511P20C3D
	C	25	Н	511H25C0D	511H25C1D	511H25C2D	-
			Р	-	511P25C1D	511P25C2D	511P25C3D
			Н	511H30C0D	511H30C1D	511H30C2D	-
		30	Р	-	511P30C1D	511P30C2D	511P30C3D
			Н	511H35C0D	511H35C1D	511H35C2D	-
		35	Р	-	511P35C1D	511P35C2D	511P35C3D

					Préch	narge	
Type	Style	Taille	Précision	Jeu	0,03C	0,08C	0,13C
			Н	511H20D0D	511H20D1D	511H20D2D	-
		20	P	-	511P20D1D	511P20D2D	511P20D3D
		25	Н	511H25D0D	511H25D1D	511H25D2D	-
	D	25	P	-	511P25D1D	511P25D2D	511P25D3D
		20	Н	511H30D0D	511H30D1D	511H30D2D	-
		30	P		511P30D1D	511P30D2D	511P30D3D
		35	Н	511H35D0D	511H35D1D	511H35D2D	-
		33	P	-	511P35D1D	511P35D2D	511P35D3D
		15	Н	511H15E0D	511H15E1D	511H15E2D	-
			P		511P15E1D	511P15E2D	511P15E3D
		25	Н	511H25E0D	511H25E1D	511H25E2D	-
			P		511P25E1D	511P25E2D	511P25E3D
	E	30	Н	511H30E0D	511H30E1D	511H30E2D	-
			P	-	511P30E1D	511P30E2D	511P30E3D
511		35	Н	511H35E0D	511H35E1D	511H35E2D	-
			P	-	511P35E1D	511P35E2D	511P35E3D
		45	Н	511H45E0D	511H45E1D	511H45E2D	-
		45	P	-	511P45E1D	511P45E2D	511P45E3D
		25	Н	511H25F0D	511H25F1D	511H25F2D	-
		25	P	-	511P25F1D	511P25F2D	511P25F3D
		30	Н	511H30F0D	511H30F1D	511H30F2D	-
	F	30	P	-	511P30F1D	511P30F2D	511P30F3D
			Н	511H35F0D	511H35F1D	511H35F2D	-
		35	P	-	511P35F1D	511P35F2D	511P35F3D
		45	Н	511H45F0D	511H45F1D	511H45F2D	-
			Р	=	511P45F1D	511P45F2D	511P45F3D
			Н	511H15G0D	511H15G1D	511H15G2D	-
	G	15	Р	-	511P15G1D	511P15G2D	511P15G3D
	٥		Н	511H20G0D	511H20G1D	511H20G2D	-
		20	Р	=	511P20G1D	511P20G2D	511P20G3D

Les chariots et les rails chromés sont conçus et fabriqués pour être utilisés simultanément. Si un chariot non chromé est utilisé sur un rail chromé, le jeu ou la précharge du chariot augmente d'environ une catégorie. Si un chariot chromé est utilisé sur un rail non chromé, le jeu ou la précharge diminue d'environ une catégorie. Cela résulte de l'épaisseur de la couche chromée.

Combinaisons d'accessoires modulaires et taille de vis

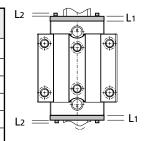
	Description	Taille							
Option		15		20		25			
L ³	Bloc de lubrification Lube for Life	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M4-0,7x35		
N³	Réservoir d'huile	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M4-0,7x30		
W³	Frotteur en caoutchouc	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M4-0,7x25		
V ³	Frotteur en Viton	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M4-0,7x25		
Z³	Racleur métallique	Vis à tête creuse/basse	M2,5-0,45x15	Vis à tête creuse/basse	M2,5-0,45x15	Vis à tête creuse/basse	M4-0,7x20		
C ₃	Fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x15	Vis à tête creuse/plate	M2,5-0,45x15	Vis à tête creuse/plate	M4-0,7x20		
LW	Bloc de lubrification + Frotteur	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M2,5-0,45x30	Vis à tête creuse/basse	M4-0,7x35		
LWC	Bloc de lubrification, frotteur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M2,5-0,45x30	Vis à tête creuse/plate	M4-0,7x35		
LWZ	Bloc de lubrification, frotteur + racleur	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M2,5-0,45x30	Vis à tête creuse/basse	M4-0,7x35		
LWZC	Bloc de lubrification, frotteur, racleur+ fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M2,5-0,45x30	Vis à tête creuse/plate	M4-0,7x35		
LZ	Bloc de lubrification + Racleur	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M4-0,7x35		
LZC	Bloc de lubrification, racleur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x20	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M4-0,7x35		
LC	Bloc de lubrification + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x20	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M4-0,7x35		
NW	Réservoir d'huile + frotteur	Vis à tête creuse/basse	M2,5-0,45x30	Vis à tête creuse/basse	M2,5-0,45x30	Vis à tête creuse/basse	M4-0,7x40		
NWZ	Réservoir d'huile, frotteur + racleur	Vis à tête creuse/basse	M2,5-0,45x30	Vis à tête creuse/basse	M2,5-0,45x35	Vis à tête creuse/basse	M4-0,7x40		
NWC	Réservoir d'huile, frotteur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x30	Vis à tête creuse/plate	M2,5-0,45x30	Vis à tête creuse/plate	M4-0,7x40		
NWZC	Réservoir d'huile, frotteur, racleur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x30	Vis à tête creuse/plate	M2,5-0,45x35	Vis à tête creuse/plate	M4-0,7x40		
NZ	Réservoir d'huile + racleur	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M2,5-0,45x30	Vis à tête creuse/basse	M4-0,7x35		
NZC	Réservoir d'huile, racleur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M2,5-0,45x30	Vis à tête creuse/plate	M4-0,7x35		
NC	Réservoir d'huile + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x20	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M4-0,7x35		
WC	Frotteur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x20	Vis à tête creuse/plate	M2,5-0,45x20	Vis à tête creuse/plate	M4-0,7x25		
WZ	Frotteur + racleur	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M4-0,7x25		
WZC	Frotteur, racleur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x20	Vis à tête creuse/plate	M2,5-0,45x25	Vis à tête creuse/plate	M4-0,7x30		
VZ	Frotteur en Viton + racleur	Vis à tête creuse/basse	M2,5-0,45x20	Vis à tête creuse/basse	M2,5-0,45x25	Vis à tête creuse/basse	M4-0,7x25		
ZC	Racleur + fixations de soufflets	Vis à tête creuse/plate	M2,5-0,45x15	Vis à tête creuse/plate	M2,5-0,45x15	Vis à tête creuse/plate	M4-0,7x20		

^{1.} Toutes les attaches ont un filetage standard.

^{2.} Consultez Thomson pour les options non répertoriées, une étude d'ingénierie est requise.

^{3.} Lorsque vous commandez uniquement des composants, deux vis sont comprises.

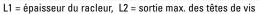
		Taille						
Option	Description	30		35		45		
L	Bloc de lubrification Lube for Life	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M4-0,7x45	Vis à tête creuse/basse	M5-0,8x50	
N	Réservoir d'huile	Vis à tête creuse/basse	M4-0,7x30	Vis à tête creuse/basse	M4-0,7x35	Vis à tête creuse/basse	M5-0,8x45	
W	Frotteur en caoutchouc	Vis à tête creuse/basse	M4-0,7x25	Vis à tête creuse/basse	M4-0,7x30	Vis à tête creuse/basse	M5-0,8x35	
٧	Frotteur en Viton	Vis à tête creuse/basse	M4-0,7x25	Vis à tête creuse/basse	M4-0,7x30	Vis à tête creuse/basse	M5-0,8x35	
Z	Racleur métallique	Vis à tête creuse/basse	M4-0,7x20	Vis à tête creuse/basse	M4-0,7x25	Vis à tête creuse/basse	M5-0,8x30	
С	Fixations de soufflets	Vis à tête creuse/plate	M4-0,7x20	Vis à tête creuse/plate	M4-0,7x25	Vis à tête creuse/plate	M5-0,8x30	
LW	Bloc de lubrification + Frotteur	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M4-0,7x45	Vis à tête creuse/basse	M5-0,8x50	
LWC	Bloc de lubrification, frotteur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M4-0,7x45	Vis à tête creuse/plate	M5-0,8x50	
LWZ	Bloc de lubrification, frotteur + racleur	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M4-0,7x45	Vis à tête creuse/basse	M5-0,8x50	
LWZC	Bloc de lubrification, frotteur, racleur+ fixations de soufflets	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M4-0,7x45	Vis à tête creuse/plate	M5-0,8x50	
LZ	Bloc de lubrification + Racleur	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M4-0,7x45	Vis à tête creuse/basse	M5-0,8x50	
LZC	Bloc de lubrification, racleur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M4-0,7x45	Vis à tête creuse/plate	M5-0,8x50	
LC	Bloc de lubrification + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M4-0,7x45	Vis à tête creuse/plate	M5-0,8x50	
NW	Réservoir d'huile + frotteur	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M4-0,7x45	Vis à tête creuse/basse	M5-0,8x50	
NWZ	Réservoir d'huile, frotteur + racleur	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M4-0,7x45	Vis à tête creuse/basse	M5-0,8x55	
NWC	Réservoir d'huile, frotteur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M4-0,7x45	Vis à tête creuse/plate	M5-0,8x55	
NWZC	Réservoir d'huile, frotteur, racleur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x45	Vis à tête creuse/plate	M4-0,7x50	Vis à tête creuse/plate	M5-0,8x55	
NZ	Réservoir d'huile + racleur	Vis à tête creuse/basse	M4-0,7x35	Vis à tête creuse/basse	M4-0,7x40	Vis à tête creuse/basse	M5-0,8x45	
NZC	Réservoir d'huile, racleur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x35	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M5-0,8x50	
NC	Réservoir d'huile + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x35	Vis à tête creuse/plate	M4-0,7x40	Vis à tête creuse/plate	M5-0,8x50	
WC	Frotteur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x25	Vis à tête creuse/plate	M4-0,7x30	Vis à tête creuse/plate	M5-0,8x35	
WZ	Frotteur + racleur	Vis à tête creuse/basse	M4-0,7x25	Vis à tête creuse/basse	M4-0,7x30	Vis à tête creuse/basse	M5-0,8x35	
WZC	Frotteur, racleur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x30	Vis à tête creuse/plate	M4-0,7x30	Vis à tête creuse/plate	M5-0,8x35	
VZ	Frotteur en Viton + racleur	Vis à tête creuse/basse	M4-0,7x25	Vis à tête creuse/basse	M4-0,7x30	Vis à tête creuse/basse	M5-0,8x35	
ZC	Racleur + fixations de soufflets	Vis à tête creuse/plate	M4-0,7x20	Vis à tête creuse/plate	M4-0,7x25	Vis à tête creuse/plate	M5-0,8x30	

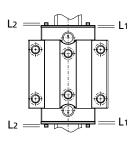

Consultez Thomson pour les options non répertoriées, une étude d'ingénierie est requise.

Accessoires modulaires

Frotteur supplémentaire

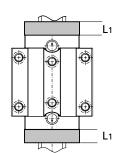
Taille	Caoutchouc Réf.	Viton [®] Réf.	L1 (mm)	L2 (mm)	Poids (kg)
15	531WR15	531VR15	7	4	0,005
20	531WR20	531VR20	7	4	0,008
25	531WR25	531VR25	7	4	0,010
30	531WR30	531VR30	7	4	0,016
35	531WR35	531VR35	7	4	0,022
45	531WR45	531VR45	7	4	0,036



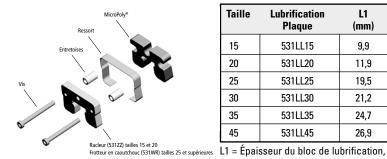

L1 – épaisseur du frotteur, L2 – sortie max. des têtes de vis Peuvent être installés sans qu'il soit nécessaire de séparer le chariot du rail

Racleur métallique

Taille	Racleur Réf.	L1 (mm)	L2 (mm)	Poids (kg)
15	531ZZ15	1,5	4	0,005
20	531ZZ20	1,5	4	0,009
25	531ZZ25	1,5	4	0,011
30	531ZZ30	1,5	4	0,018
35	531ZZ35	1,5	4	0,024
45	531ZZ45	1,5	4	0,057

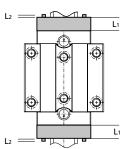


Réservoir d'huile



Taille	Lubrification Plaque	L1 (mm)	Poids (kg)
15	5310W15	8,5	0,004
20	5310W20	11	0,010
25	5310W25	12,7	0,017
30	5310W30	14	0,023
35	5310W35	16,2	0,039
45	5310W45	19,2	0,065

L1 = Épaisseur du réservoir d'huile, les têtes des vis sont enfoncées dans la plaque



Bloc de lubrification

Taille	Lubrification Plaque	L1 (mm)	L2 (mm)	Poids (kg)
15	531LL15	9,9	4	0,009
20	531LL20	11,9	4	0,024
25	531LL25	19,5	4	0,083
30	531LL30	21,2	4	0,213
35	531LL35	24,7	4	0,069
45	531LL45	26,9	4	0,123

- L2 = Sortie max. des têtes de vis

À sa sortie de l'usine en tant qu'unité complète, le chariot est doté d'un kit de graisse EP2 et le ressort est détendu. Le client peut l'installer après avoir assemblé le chariot sur le rail.

Le racleur Z est compris dans le bloc de lubrification pour les tailles 15 et 20. Le racleur W est compris pour les tailles 25 et supérieures.

Exemple

Chariot 511 de taille 45 avec joints modulaires 5310W et 531WR des deux côtés :				
Longueur du chariot (L)	= 89,3			
5310W45 L ₁ x 2	= 12,7 x 2			
531WR45 L ₁ x 2	= 7 x 2			
531WR45 L ₂ x 2 = 4 x 2				
Longueur totale = 136,7 mm				

Chaque joint modulaire est fourni avec les vis appropriées pour son installation sur l'embout d'extrémité standard. Lorsque vous utilisez des combinaisons de joints modulaires, des vis plus longues peuvent être requises. Consultez le

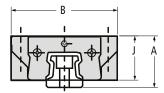
tableau des pages 35 et 36 pour plus d'informations sur la taille de vis appropriée.

Informations sur les cotes de soufflets

Trois styles de soufflets sont disponibles :

531BB

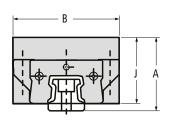
« Low Profile » (Discret) dont les cotes externes n'excèdent pas le chariot, en polyester enduit de polyuréthane, température ambiante maximum de 80 °C.


531BC

« High Compression » (Haute compression), en fibre de verre revêtue de Téflon (B) antiétincelles et conçu pour accepter les compressions élevées ; à utiliser lorsque la température ambiante maximum excède les pointes de température des roulements.

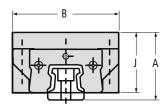
531WC

« Walk On » (Accessoire) capable de supporter les environnements les plus difficiles, y compris les applications de soudage et de polissage, avec une capacité de charge des roulements de 90kg.


Les soufflets sont compatibles avec les autres joints modulaires en option, ce qui permet d'améliorer sans difficultés l'efficacité des joints standard. Leur installation est simple et rapide. Il est possible de les installer ultérieurement. Pour pouvoir accueillir la plaque d'adaptation des fixations de soufflets 531CR, les extrémités des rails doivent être percées. Cette option peut être facilement installée sur site ou ajoutée en usine.

531BB Soufflets « Low Profile » (Discret)

Taille	Réf.	В	J	Α	CR
15	531BB15	45	23	26	0,17
20	531BB20	41,6	24	29	0,17
25	531BB25	43,7	29	35,5	0,17
30	531BB30	51,2	33,3	40,3	0,17
35	531BB35	64	39,5	47,5	0,15
45	531BB45	76	48	58	0,15


Le client doit spécifier la longueur étendue à la commande, voir page 118 pour les calculs nécessaires.

531BC Soufflets « High Compression » (Haute compression)

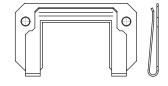
Taille	Réf.	В	J	Α	CR
15	531BC15	59	33	36	0,10
20	531BC20	61,6	34	39	0,10
25	531BC25	63,7	39	45,5	0,10
30	531BC30	71,5	43,3	50,3	0,10
35	531BC35	84	49,5	57,5	0,07
45	531BC45	76	58	68	0,07

Le client doit spécifier la longueur étendue à la commande, voir page 118 pour les calculs nécessaires.

531BW Soufflets « Walk On » (Accessoire)

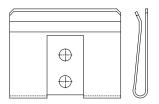
Taille	Réf.	В	J	Α	CR
15	531BW15	55	30	31	0,19
20	531BW20	61	33	34	0,19
25	531BW25	65	36	40,5	0,19
30	531BW30	70	39	44,2	0,19
35	531BW35	77	42	48	0,19
45	531BW45	101	53	61	0,15

Le client doit spécifier la longueur étendue à la commande, voir page 118 pour les calculs nécessaires.

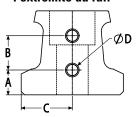


Plaques d'adaptation pour la fixation de soufflets

531CC Fixations des soufflets pour chariots – Plaque de fixation


La plaque de fixation servant à fixer les soufflets sur les chariots 531CC permet d'assembler les soufflets et les chariots. La plaque d'adaptation des fixations de soufflets est en acier.

Taille	Réf.		
15	531CC15		
20	531CC20		
25	531CC25		
30	531CC30		
35	531CC35		
45	531CC45		


531CR Fixations des soufflets pour rails-Plaque de fixation

La plaque de fixation des soufflets sur les rails 531CR permet d'assembler les soufflets et les rails. Les trous de fixation peuvent être percés à l'extrémité du rail en cas d'installation ultérieure ou ajoutés en usine. (Remarque : les rails de taille 15 sont trempés à coeur. L'extrémité des rails doit être recuite pour pouvoir percer correctement les fixations de la plaque d'extrémité. Par conséquent, la section située à l'extrémité des rails sera souple et risque d'être hors de la plage de tolérance). La plaque d'adaptation des fixations de soufflets est en acier.

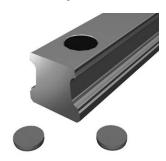
Détail de l'usinage des rails Vis¹ Taille Réf. Min.Y Profondeur Profondeu Α В Taille Longueur Туре 15³ 531CR15 3,50 8,00 7,50 14 20 531CR20 5,00 8,00 10,00 5,70 7,70 M3 0,5 Vis bouton 15 531CR25 25 7,24 10,00 11,50 Tête 17 30 531CR30 9,12 10,00 14,00 20 **Embout** 7,70 9,70 M4 0.7 10 35 531CR35 11,00 10,00 17,00 Vis 20 45 531CR45 15.01 10,00 22.50 22

Détail de l'usinage de l'extrémité du rail

Toutes les cotes sont exprimées en mm, sauf spécification contraire.

- 1. Deux vis sont fournies avec chaque fixation de soufflet sur le rail.
- 2. Cote Y min. pour assurer que la profondeur percée n'atteint pas le trou de montage du rail.
- 3. Il peut être nécessaire de recuire l'extrémité des rails. Pour plus d'informations, consultez les remarques ci-dessus.

Outils et accessoires de maintenance et d'installation


Le rail d'assemblage est requis lorsque le chariot doit être séparé du rail, puis réinstallé afin de garantir une bonne installation. Il est recommandé de laisser le chariot sur le rail d'assemblage lorsqu'il est retiré afin de protéger les billes contre tout agent contaminant. Le cas échéant, vous pouvez resserrer les deux vis de montage internes pour bien fixer les blocs des galets de roulement au chariot afin que le chariot reste bien en place sur le rail d'assemblage. Le rail d'assemblage est en plastique.

Rail d'assemblage-531 MT

Référence	Taille	Longueur (mm)	Poids (kg)
531MT15	15	80	0,010
531MT20	20	115	0,021
531MT25	25	130	0,031
531MT30	30	160	0,061
531MT35	35	165	0,076
531MT45	45	200	0,135

Embouts et ruban pour rails standard à utiliser avec un chariot à billes Série 500 Type A

Embouts en plastique de type HP	Taille
531HP15	15
531HP20	20
531HP25	25
531HP30	30
531HP35	35
531HP45	45

Matériau : Nylon

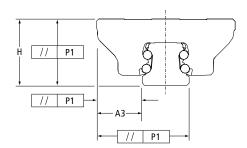
Ruban de mylar	Taille	Longueur
531RT15	15	3 m
531RT20	20	3 m
531RT25	25	3 m
531RT30	30	3 m
531RT35	35	3 m
531RT45	45	3 m

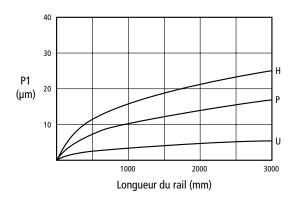
Rail Série 500 avec baguette de couverture en acier inoxydable

	Embouts de baguette de couverture des rails	Outil de montage	Embouts de remplacement	Baguette de couverture des rails standard	Largeur baguette de couverture	Longueur PC simple
Taille	Référence ¹	Référence	Référence ²	Référence ³	des rails (mm)	max. (mm)
25	531RCS25	531RCT25	531RCP25	521H25C	15	6000
30	531RCS30	531RCT30	531RCP30	521H30C	19	6000
35	531RCS35	531RCT35	531RCP35	521H35C	25	6000
45	531RCS45	531RCT45	531RCP45	521H45C	25	6000

- Le client doit spécifier la longueur du rail à utiliser à la commande.
 La pièce fournie mesure 2 à 3,5 mm de plus afin de permettre l'installation correcte des embouts d'extrémité.
- 2. Deux embouts sont fournis avec chaque pièce 531RCS commandée.
- 3. Qualité de précision H illustrée à titre d'exemple, précisions P et U disponibles.
- 4. La baguette de couverture ne doit pas être installée plus de 3 fois.

Catégorie de précision


Trois tolérances permettent de décrire la précision d'un roulement sur rail : la tolérance de parallélisme, la variation de paire et la précision de l'assemblage. Ces trois tolérances sont mesurées de la base du rail au centre du dessus du chariot (H) et de l'arête de référence du rail au centre de l'arête de référence du chariot (A3).


La tolérance de parallélisme définit la tolérance sur les cotes H et A3 en tant que fonction de déplacement axial, mesurée à partir d'un chariot sur toute la longueur du rail dans le sens descendant. Ce paramètre est analogue à la rectitude du déplacement. En tant que tel, le parallélisme définit les attributs du rail seulement.

La précision de l'assemblage définit la tolérance sur les cotes H et A3 en tant que fonction d'un ensemble chariot-rail, mesurée à partir des cotes nominales.

La variation de paire définit la tolérance sur les cotes H et A3 en tant que fonction de chariots à la même position sur un même rail. Ce paramètre décrit la précision du chariot seulement.

La catégorie de précision sélectionnée détermine en partie la précision du système. D'autres facteurs, comme la planitude et la rectitude des surfaces de montage, affectent aussi considérablement la précision du système.

Tolérances

	(atégorie de précisio	n
	H : Haute	P : Standard	U : Ultraprécision
Tolérance de précision de l'assemblage sur les cotes H et A3 (mesurée au milieu du chariot, au niveau de n'importe quel point le long du rail)	±50	±20	±5
Variation de paire max. Variation des cotes H et A3 mesurée sur plusieurs chariots montés sur le même rail (mesurées au milieu du chariot à la même position sur le rail)	15	7	3
Tolérance de parallélisme	100	40	10

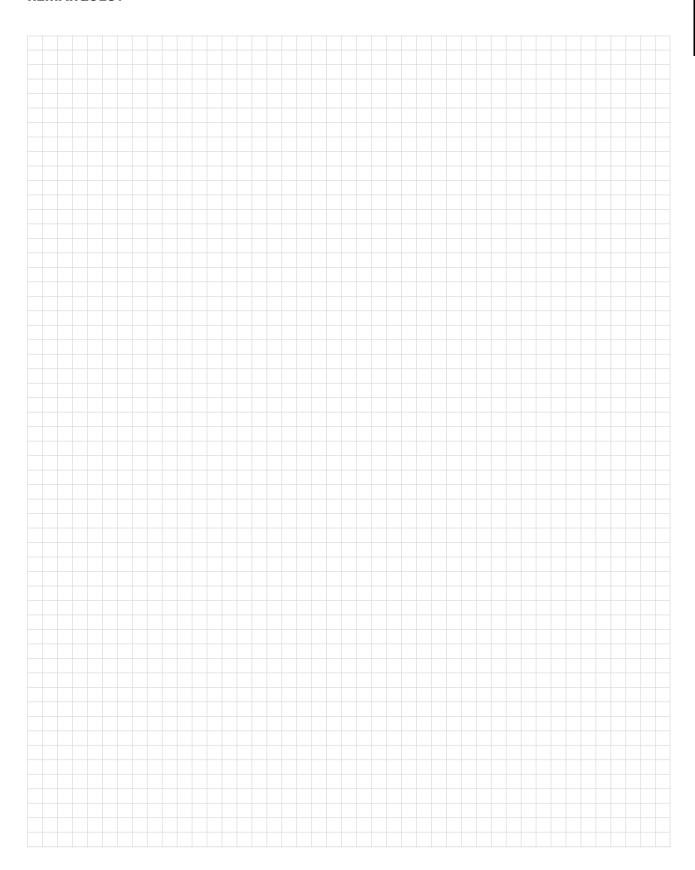
Toutes les valeurs sont exprimées en µm

Précharge

42

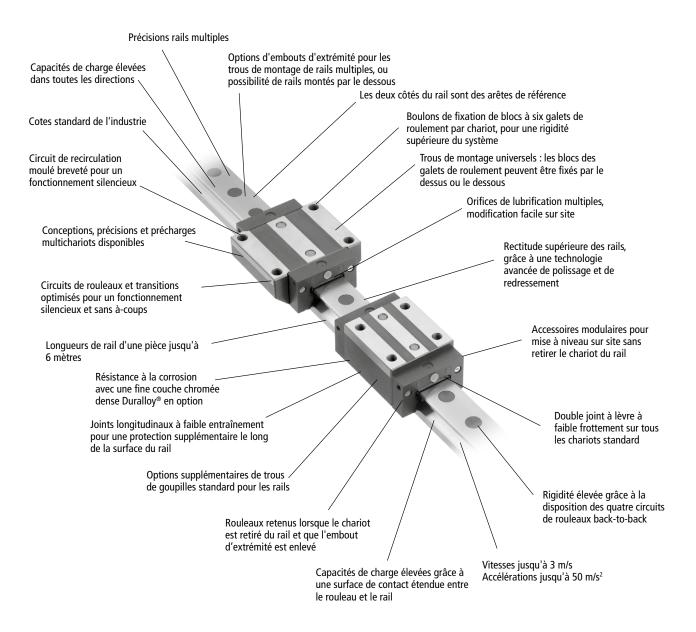
Trois catégories de précharge et un jeu sont disponibles pour les chariots de guidage à billes sur rail Série 500. La précharge réduit au mieux la déformation élastique causée par les forces extérieures pour une meilleure rigidité. La précharge élimine le jeu interne entre les rails et le chariot de sorte que le jeu sera égal à zéro (antijeu).

Combinaisons de précision de la précharge


Précision	lou		Précharge	
Catégorie	Jeu	0,03C1	0,08C1	0,13C1
Н	0	1	2	
P, U		1	2	3

- 1. C = Capacité de charge dynamique du roulement
- Un roulement préchargé, chargé au-delà de la valeur de précharge, a les mêmes caractéristiques qu'un jeu de roulement.

Exemple: chariot taille 25 style A avec capacité de charge dynamique de 21,1 kN, précharge moyenne = 0,08C = 0,08 x 21,1 kN = 1,7 kN; si la charge appliquée est supérieure à 1.7 kN la


précharge n'a aucun bénéfice.

REMARQUES:

Guidage linéaire à rouleaux sur rail Série 500

Guidage linéaire à rouleaux sur rail Série 500

Caractéristiques

Le guidage linéaires Série 500 Thomson se caractérise par une durée de vie supérieure, une rigidité exceptionnelle, des capacités de charge dynamique et statique élevées et une haute précision. Il est doté de plusieurs options de joints et d'orifices de lubrification et est conçu pour supporter des amplitudes de moment élevées. Toutes ces caractéristiques facilitent la modification de ces systèmes sur site et leur substitution aux produits proposés par les concurrents.

Ces propriétés renforcent la précision et la rigidité des guidages et contribuent à réduire les vibrations. Les utilisateurs voient ainsi la durée de vie de leurs machines et de leurs outils prolongée. Ceci a un impact direct sur les performances des entreprises et permet à l'utilisateur de réduire ses coûts.

Disponibles en 4 modèles de chariots.

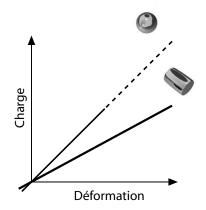
Matériaux

Les guidages linéaires à rouleaux Série 500 sont fabriqués à partir d'un acier à roulements de qualité supérieure. L'embout d'extrémité est en nylon chargé de verre hautement résistant avec un joint en caoutchouc nitrile. Tous les chariots et les éléments roulants sont trempés à coeur et tous les rails cémentés-trempés. Des contrôles qualité très stricts sont mis en oeuvre pour garantir l'homogénéité des matériaux dès la source et nous permettre ainsi d'offrir des produits de qualité supérieure.

Interchangeabilité

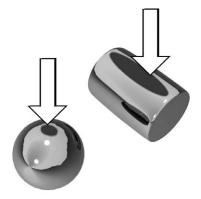
Les guidages linéaires à rouleaux Série 500 sont entièrement interchangeables. N'importe quel chariot peut progresser sur tout type de rail de la même précision sans altérer la précision du système. Ceci est possible grâce à nos contrôles du processus de fabrication stricts.

Précision et précharge


Les guidages linéaires à rouleaux Série 500 sont disponibles dans trois catégories de précision différentes, dans trois gammes de précharge différentes, afin de permettre la personnalisation en fonction des besoins de votre application.

Rectitude

Les rails à rouleaux Série 500 sont soumis à de multiples traitements de redressement pendant et après le polissage des circuits des rouleaux, sur des rails d'une pièce mesurant jusqu'à 6 mètres de long.


Ces nombreux traitements et contrôles permettent de produire des rails offrant la meilleure rectitude du marché, améliorant la précision des machines dotées de rouleaux Série 500.

Les roulements pour guidages linéaires sur rail ont un impact significatif sur la rigidité globale du système. La rigidité des rouleaux Série 500 est obtenue grâce à l'utilisation d'une structure équivalente à celle d'un système de roulements adossés, complétée par des rouleaux spéciaux bombés pour empêcher les charges de bord en cas d'erreur d'alignement. Il en résulte une déformation élastique réduite à mesure que la charge augmente par rapport à un chariot à billes ou un système de roulements face à face.

Capacité de charge

Les rouleaux ont une capacité de charge supérieure à celle des billes grâce à une surface de contact accrue sur la longueur du rouleau. Une bille fournit un point de contact unique, tandis qu'un rouleau offre une zone de contact beaucoup plus grande. Il en résulte une capacité de charge considérablement plus grande et une usure réduite, avec un frottement des roulements minimum.

Fonctionnement en fluide/Réduction du bruit

Le fonctionnement fluide et la réduction du bruit résultent d'un circuit de recirculation moulé, offrant une forme géométrique optimisée et des transitions minimales. Ces caractéristiques assurent un fonctionnement fluide et silencieux.

Plusieurs options de lubrification

L'embout d'extrémité standard du chariot est conçu pour apporter une certaine souplesse. Il est doté de six orifices de lubrification et d'autres options internes permettant d'acheminer la graisse ou l'huile vers l'emplacement approprié. Ces options peuvent être facilement changées sur site ou ajoutées en usine. Certaines options ne sont pas disponibles pour la taille 25.

Si vous n'êtes pas certain de l'emplacement le plus approprié pour l'orifice de lubrification, ces chariots vous permettent de les modifier très simplement sur site, afin d'optimiser les performances de votre système. En outre, ils simplifient la maintenance.

Accessoires modulaires disponibles

Le chariot standard est fourni avec des joints longitudinaux et des joints à double lèvre qui couvrent entièrement le chariot contenant les roulements afin de protéger les rouleaux et les surfaces des pistes et de minimiser les pertes de lubrifiant.

D'autres frotteurs ou racleurs métalliques, ainsi que d'autres composants du réservoir d'huile peuvent être facilement installés sur site ou ajoutés en usine.

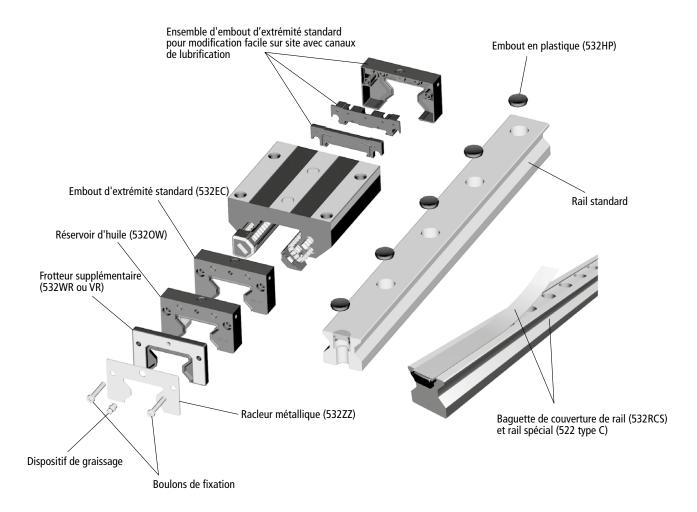
Ces caractéristiques novatrices permettent aux utilisateurs de mettre à niveau facilement, efficacement et à moindre coût les joints du chariot et le système de lubrification sans avoir à remplacer l'ensemble du bloc chariot.

Joints longitudinaux

Sous le chariot sont intégrés des joints longitudinaux à faible entraînement destinés à protéger les rouleaux et les surfaces des pistes des rouleaux contre tout agent contaminant. Ces joints longitudinaux sont une protection supplémentaire qui contribue à prolonger la durée de vie des guidages et à optimiser leurs performances globales.

Accessoires pour rails

Plusieurs options de remplissage des trous de montage sont associées aux rails afin d'éviter tout risque de contamination des roulements. Des embouts personnalisés sont disponibles en plastique, en laiton ou en acier inoxydable. Un rail spécial utilisant une baguette de couverture personnalisée est aussi disponible. En outre, Thomson possède en stock une gamme de soufflets destinés à protéger l'intégralité du système. Tous les accessoires sont disponibles en stock et représentent d'autres caractéristiques novatrices de la série 500. Des outils de montage qui facilitent et optimisent l'installation sont également disponibles.


Plaque de rétention des rouleaux

Les éléments roulants des chariots sont retenus dans le roulement de sorte que le chariot puisse être séparé du rail, ou l'embout d'extrémité retiré du chariot, sans crainte que les rouleaux s'échappent. Lorsque vous séparez le chariot du rail, il est recommandé de le placer sur un rail ou un arbre de montage afin de bien protéger les éléments roulants.

Guidage linéaire à rouleaux sur rail Série 500

Conception modulaire - Vue éclatée

Également disponibles (non illustrés) :

- Embouts de rails en acier inoxydable (532HS)
- Embouts de rails en laiton (532HB)
- Ruban de mylar (532RT)
- Rail à fixation par le dessous (522 Type U)

La structure modulaire de l'ensemble du guidage à rouleaux sur rail linéaire Série 500 facilite les mises à niveau sur site et permet d'effectuer des mises à niveau rapides de joints ou de lubrification, sans qu'il soit nécessaire de remplacer le chariot ou les rails.

Chariots à rouleaux standard Série 500

Thomson propose quatre styles de chariots comportant six trous de montage qui permettent des montages supplémentaires sur site ou ultérieurement. Tous se caractérisent par une rigidité supérieure et une conception très souple.

					Réf	érence de l	oase	Páfáronco rail	Max. Longueur de
	Sty	/le	Taille	Accuracy		Précharge	9	Référence rail	
	,				0,03C	0,08C	0,13C	standard	rail d'une pièce (mm
	П	FT - 8000		P	512P25A1	512P25A2	512P25A3	522P25A	
		(* * * * * * * * * * * * * * * * * * *	25	S	512S25A1	512S25A2	512S25A3	522S25A	6000
			23	U	512U25A1	512U25A2	512U25A3	522U25A	-
		Ä		P	512023A1	512023A2 512P35A2	512025A3	522P35A	
		•	35	S	512535A1	512535A2	512535A3	522S35A	6000
Chariot	١	•	33	U	512335A1	512335A2 512U35A2	512U35A3	522U35A	-
standard	A	- F		P	512033A1	512033A2 512P45A2	512033A3 512P45A3	522P45A	
Stariuaru		ĕ Tå TØ	1 45	S	512545A1	512545A2	512S45A3	522S45A	6000
			45	U	512U45A1	512U45A2	512U45A3	522U45A	-
				P	512045A1	512043A2 512P55A2	512043A3	522P55A	
				S	512F55A1	512F55A2	512F55A3	522S55A	6000
		[55	U	512055A1	512U55A2	512U55A3	522U55A	-
		•		P	512033A1	512P25B2	512033A3 512P25B3	522P25A	
			1 25	S	512F25B1	512F23B2 512S25B2	512F23B3	522525A 522S25A	6000
			25	U	512323B1	512323B2 512U25B2	512U25B3	522U25A	- 0000
				P	512023B1	512023B2 512P35B2	512023B3 512P35B3	522P35A	
			2.5	S	512F35B1	512F35B2 512S35B2	512F35B3	522535A 522535A	6000
.			35	U	512333B1	512333B2 512U35B2	512333B3 512U35B3	522U35A	- 0000
Chariot				P	512033B1 512P45B1	512033B2 512P45B2	512033B3 512P45B3	522P45A	
long	B		l	-					6000
standard		P A B	45	S	512S45B1	512S45B2	512S45B3	522S45A	- 6000
Stariuaru		ا الما ال		U	512U45B1	512U45B2	512U45B3	522U45A	
				P	512P55B1	512P55B2	512P55B3	522P55A	6000
		ليًا	55	S	512S55B1	512S55B2	512S55B3	522S55A	6000
		•		U	512U55B1	512U55B2	512U55B3	522U55A	
				P	512P65B1	512P65B2	512P65B3	522P65A	6000
			65	S	512S65B1	512S65B2	512S65B3	522S65A	6000
		U 512U65B1 512U65B2 512U65B3 522U65A							
				P	512P25C1	512P25C2	512P25C3	522P25A	6000
			25	S	512S25C1	512S25C2	512S25C3	522S25A	6000
				U	512U25C1	512U25C2	512U25C3	522U25A	
				P	512P35C1	512P35C2	512P35C3	522P35A	6000
Chariot	ا ہا	[©]	35	S	512S35C1	512S35C2	512S35C3	522S35A	6000
	C			U	512U35C1	512U35C2	512U35C3	522U35A	
étroit		e e		P	512P45C1	512P45C2	512P45C3	522P45A	
			45	S	512S45C1	512S45C2	512S45C3	522S45A	6000
				U	512U45C1	512U45C2	512U45C3	522U45A	
		ŢŽŢ		P	512P55C1	512P55C2	512P55C3	522P550A	(000
		•	55	S	512S55C1	512S55C2	512S55C3	522S55A	6000
	\vdash			U	512U55C1	512U55C2	512U55C3	522U55A	
				P	512P25D1	512P25D2	512P25D3	522P25A	(000
		1000	25	S	512S25D1	512S25D2	512S25D3	522S25A	6000
		•;•		U	512U25D1	512U25D2	512U25D3	522U25A	
				P	512P35D1	512P35D2	512S35D3	522P35A	
Chariot			35	S	512S35D1	512S35D2	512S35D3	522S35A	6000
				U	512U35D1	512U35D2	512U35D3	522U35A	
long	D			P	512P45D1	512P45D2	512P45D3	522P45A	6000
étroit			45	S	512S45D1	512S45D2	512S45D3	522S45A	6000
		!		U	512U45D1	512U45D2	512U45D3	522U45A	
		 		P	512P55D1	512P55D2	512P55D3	522P55A	4
			55	S	512S55D1	512S55D2	512S55D3	522S55A	6000
		Ta T		U	512U55D1	512U55D2	512U55D3	522U55A	
		<u> </u>		P	512P65D1	512P65D2	512P65D3	522P65A	
			65	S	512S65D1	512S65D2	512S65D3	522S65A	6000
				U	512U65D1	512U65D2	512U65D3	522U65A	

Options pour les guidages à rouleaux sur rail Série 500

Fixation par le dessus - 522 Type A

Fixation par le dessous - 522 Type U

Types de rails et accessoires

Les rails à rouleaux Série 500 sont disponibles dans deux configurations:

- Fixation par le dessus 522 Type A
- Fixation par le dessous 522 Type U

Dans le modèle avec fixation par le dessus, différents types d'options permettent de boucher les trous.

Un embout ou un joint, comme décrit ci-dessous, peut être apposé sur les trous de montage des rails 522 Type A standard après leur installation.

Embouts en plastique

532HP Ces embouts en plastique constituent une méthode simple et bon marché pour boucher les zones de fixation des rails. Ces embouts en plastique sont faciles à mettre en place sur n'importe quel rail avec un chasse-cône souple non métallique et peuvent être facilement retirés.

Embouts en laiton

532HB Ces embouts en laiton sont plus robustes que les embouts en plastique, mais coûtent un peu plus cher et exigent une plus grande précision lors de l'installation. Ils conviennent à tous les guidages à rouleaux sur rail Série 500 et requièrent le polissage du rail à la main après leur installation.

Embouts en acier inoxydable à deux pièces

532HS Ces embouts en acier inoxydable à deux pièces sont les embouts les plus robustes disponibles pour les guidages à rouleaux. Grâce à leur structure et leur conception en deux pièces, les embouts se fixent au-dessus du boulon à tête creuse. Ils ne nécessitent aucun polissage après leur installation. Il est recommandé d'utiliser le boulon à tête hexagonale pour que les embouts 532HS soient correctement fixés. Pour une installation correcte, nous recommandons l'emploi des outils de montage 532HST indiqués page 69.

Ruban de mylar

Un ruban de mylar spécial constitue une alternative simple et bon marché qui peut être rapidement placée sur la surface du rail. La référence 532RT mesure 3 mètres.

Rail Série 500 en option

L'option 532RC utilise un rail spécial 522 de type C qui peut être facilement installé à l'aide de l'outil de montage 532RCT indiqué page 69.

Chariot en option

Les chariots à rouleaux Série 500 sont également disponibles avec des lubrifiants spéciaux. Ceux-ci sont disponibles en stock ou livrés dans des délais très brefs.

Guidage à rouleaux sur rail Série 500

Autres types de joints et d'accessoires de lubrification Les chariots intègrent des options de lubrification et des joints modulaires qui peuvent être facilement modifiés sur site ou ajoutés directement en usine.

L'embout d'extrémité du chariot standard intègre un joint à double lèvre à faible frottement et longitudinaux qui couvrent totalement le chariot contenant les roulements. Le joint à double lèvre protège le système contre tout agent contaminant et favorise la lubrification. Il assure également l'élimination de la graisse du chariot afin d'éviter les excès de lubrification qui peuvent entraîner une hausse des températures de fonctionnement. Ce joint à double lèvre peut être utilisé avec la lubrification à l'huile.

Cet embout de chariot standard comprend en son centre un orifice de lubrification, doté de canaux de lubrification spécialement conçus et modifiés pour acheminer le lubrifiant vers les différentes pistes des rouleaux. L'orifice de lubrification peut être facilement changé sur site ou fabriqué en usine sur le côté ou le dessus du système. En outre, il est possible de modifier la configuration interne afin de séparer les circuits de lubrification propres au montage vertical ou à la lubrification à l'huile.

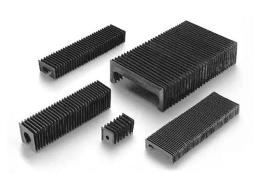
L'embout standard du chariot est doté de canaux de lubrification destinés à acheminer le lubrifiant vers les circuits des rouleaux appropriés. La plaque d'extrémité du chariot standard peut être facilement modifiée sur site afin d'acheminer le lubrifiant séparément ou elle peut être personnalisée directement en usine.

Options—joints modulaires et accessoires pouvant être installés sur site

Joints supplémentaires

Les joints **532WR** et **532VR** fournissent à l'ensemble une protection supplémentaire contre les agents contaminants. Ces joints peuvent être facilement ajoutés sur site. Ils sont accompagnés des vis requises pour faciliter leur installation.

- Le joint 532WR est en caoutchouc nitrile résistant (Buna N)
- Le joint 532VR est en Viton® résistant


Ces joints sont compatibles avec d'autres accessoires modulaires en option, ce qui permet d'améliorer l'efficacité des joints standard. Ils peuvent être facilement installés sur site ou ajoutés directement en usine.

Racleur métallique

Le racleur métallique 532ZZ, en acier inoxydable, renforce la protection des lèvres du joint contre les grosses saletés et les copeaux métalliques. Ces agents contaminants volumineux peuvent être éliminés facilement, assurant ainsi une protection supérieure des lèvres du joint. Le racleur métallique est compatible avec d'autres accessoires modulaires en option, ce qui permet d'améliorer sans difficultés l'efficacité des joints standard. Cette option peut être facilement installée sur site ou ajoutée en usine.

Pour passer commande ou connaître d'autres types de joints et d'accessoires de lubrification, voir page 64

Réservoir d'huile

Le **réservoir d'huile 5320W** est un système de lubrification automatique économique. Il intègre un réservoir d'huile assurant une lubrification uniforme et régulière des rouleaux pendant de longues périodes. Lorsque vous utilisez le réservoir d'huile Type 5320W, vous n'avez plus à planifier une maintenance régulière et la lubrification est effectuée aux endroits requis. Par ailleurs, le réservoir est rempli lorsque cela est nécessaire et il peut assurer la lubrification sur 5 000 km au maximum.

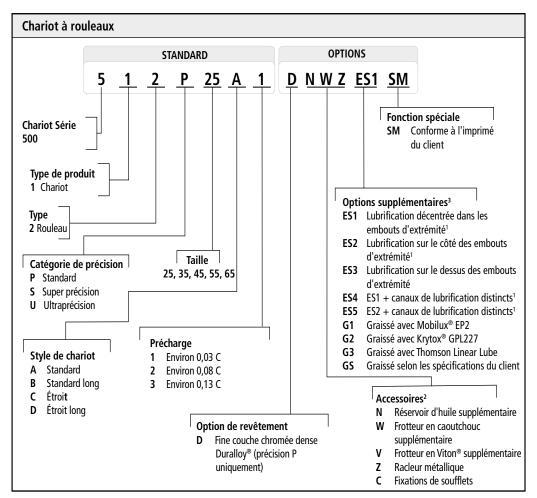
Le réservoir d'huile Type 5320W est compatible avec d'autres joints modulaires en option, ce qui permet d'améliorer sans difficultés l'efficacité des joints standard. Cette option peut être facilement installée sur site ou ajoutée en usine.

Soufflets

Des **soufflets standard** sont disponibles pour tous les ensembles. Les soufflets couvrent toute la longueur du rail. Ils assurent une protection supplémentaire contre la poussière, les saletés et les éclaboussures de liquides. Leur installation est simple et rapide. Il est possible de les ajouter ultérieurement lorsque les extrémités des rails sont percées pour recevoir la fixation de rail 532CR.

Trois styles de soufflets sont disponibles:

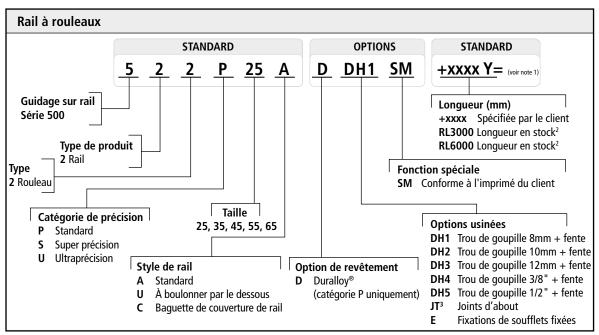
- Type B « Low Profile » (Discret), dont les cotes externes ne dépassent pas le chariot ;
- Type C « High Compression » (Haute compression);
- Type W « Walk On » (Accessoire), capable de supporter les environnements les plus difficiles avec une capacité de charge des roulements de 90 kg.

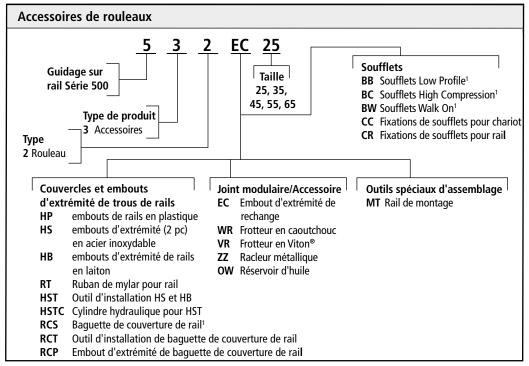

Les soufflets sont compatibles avec d'autres accessoires modulaires en option, ce qui permet d'améliorer sans difficultés l'efficacité des joints standard. Ils peuvent être facilement installés sur site.

Remarque : l'ajout d'accessoires modulaires augmente la capacité d'entraînement de l'ensemble chariot, entraînant plus de frottements au démarrage et une plus grande consommation d'énergie.

Comparaison de l'entraînement relatif par rapport à la conception

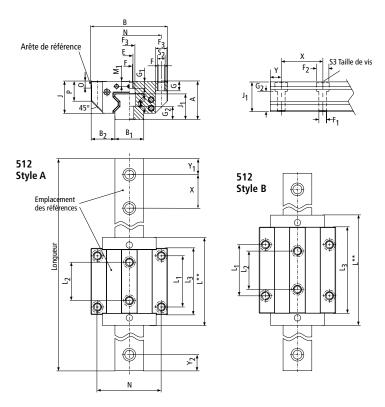
Туре	Entraînement relatif
Chariot standard	•
Frotteur en caoutchouc (531WR)	• • •
Frotteur en Viton [®] (531VR)	• • •
Racleur métallique (531ZZ)	•
Réservoir d'huile (5310W)	• •


• Faible


- 1. Les options ES1, ES2, ES4 et ES5 sont disponibles dans les tailles 35, 45, 55 et 65 uniquement.
- Les références de combinaisons d'accessoires sont répertoriées à partir de l'embout de chariot standard. Certaines combinaisons ne sont pas disponibles. Pour connaître la disponibilité de combinaisons précises, voir page 63 ou consultez Thomson.
- 3. Certaines options d'orifice et de graisse ne fonctionnent pas avec toutes les combinaisons d'accessoires. (Exemple : G1 et réservoir d'huile « N »). Avant de sélectionner une option d'orifice, étudiez toute interférence ou tout conflit avec les accessoires sélectionnés.

Des ensembles sont disponibles, reportez-vous à la page 120 pour obtenir les références détaillées de ces ensembles.

- 1. Y = Distance séparant l'extrémité du rail du centre du premier trou de montage, Y1 = Y2 sauf autre spécification.
- Les longueurs de rails en stock sont des longueurs variables : la longueur peut dépasser la longueur spécifiée et Y1/Y2 ne sont pas identiques. À utiliser par le client, qui coupe à la longueur souhaitée.
- 3. Schéma du client requis pour tout devis et toute commande. Pour obtenir plus d'informations et des modèles, reportez-vous page 122.



 La commande doit comporter la longueur des soufflets et de la baguette de couverture des rails. (Exemple: 532BB35+1 000 mm). Pour obtenir la méthode de calcul de la longueur des soufflets, voir page 118.

Des ensembles sont disponibles, reportez-vous à la page 120 pour obtenir les références détaillées de ces ensembles.

512 Styles A et B

512 de style A – Rouleau standard

Taille	CO	tes (m	m)																Roulea	nu					
	Α	В	B ₁ *	B_2	J	J ₁	L**	L ₁	L ₂	L_3	X	N	S_2	S_3	F	F ₁	F ₂	F ₃	Ø	G	$\mathbf{G_1}$	\mathbf{G}_{2}	M ₁	0	P
			±0,05																						
25	36	70	23	23,5	29,5	24,5	81	45	40	60	30	57	M8	M6	6,8	7	11	11	3,2	9	6,5	13	5,5	7,5	17,5
35	48	100	34	33	40	32	109	62	52	80	40	82	M10	M8	8,5	9	15	15	4,5	12	10	15	7	8	23
45	60	120	45	37,5	50	40	137,5	80	60	104	52,5	100	M12	M12	10,5	14	20	18	5	15	11	21	8	10	30,5
55	70	140	53	43,5	57	48	163,5	95	70	120	60	116	M14	M14	12,5	16	24	20	6	18	13,5	26	9	12	34,5

512 de style B – Rouleau long standard

Taille	CO	cotes (mm)																	Roulea	ıu					
	A	В	B ₁ *	\mathbf{B}_{2}	J	J_1	L**	L ₁	L_2	L_3	X	N	S_2	S_3	F	F ₁	F ₂	F ₃	Ø	G	$\mathbf{G_1}$	\mathbf{G}_{2}	M_1	0	P
			±0,05																						
25	36	70	23	23,5	29,5	24,5	103,4	45	40	79,4	30	57	M8	M6	6,8	7	11	11	3,2	9	6,5	13	5,5	7,5	17,5
35	48	100	34	33	40	32	136	62	52	103	40	82	M10	M8	8,5	9	15	15	4,5	12	10	15	7	8	23
45	60	120	45	37,5	50	40	172,5	80	60	135	52,5	100	M12	M12	10,5	14	20	18	5	15	11	21	8	10	30,5
55	70	140	53	43,5	57	48	205,5	95	70	162	60	116	M14	M14	12,5	16	24	20	6	18	13,5	26	9	12	34,5
65	90	170	63	53,5	76	58	251	110	82	201	75	142	M16	M16	14,5	18	26	23	7	23	19	32	13	15	51

^{*} Tolérance standard. Tolérances spéciales inférieures disponibles à la demande. Pour plus d'informations, consultez l'un de nos ingénieurs spécialisés.

Longueur du rail à préciser à la commande, $Y_1 = Y_2$, sauf spécification contraire à la commande.

^{**} Lorsque vous utilisez des plaques de lubrification ou des joints modulaires supplémentaires, la longueur totale L augmente. Pour plus d'informations, voir page 64-65.

Rouleaux Série 500

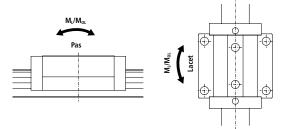
512 Styles A et B

Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique

M_I = Amplitude de moment de lacet et de pas dynamique

M₀ = Amplitude de moment de roulement dynamique


Amplitudes de moment et capacités de charge statiques

C₀ = Capacité de charge statique

M_{OL} = Amplitude de moment de lacet et de pas

dynamique

M₀ = Amplitude de moment de roulement statique

	Capacités	de charge		Mome	ents		Po	oids
Taille et	Co	C	M _{OQ}	M _Q	M _{OL}	M _L	Chariot	Rail
Style	(N)	(N)	(Nm)	(Nm)	(Nm)	(Nm)	(kg)	(kg/m)
25A	49800	27700	733	408	476	265	0,7	3,4
25B	70300	39100	1035	576	936	521	0,9	
35A	93400	52000	2008	1118	1189	662	1,6	6,5
35B	128500	71500	2762	1537	2214	1232	2,2	
45A	167500	93400	4621	2577	2790	1556	3,2	10,7
45B	229500	127800	6333	3527	5161	2874	4,3	
55A	237000	131900	7771	4325	6650	2637	5,0	15,2
55B	324000	180500	10624	5919	8745	4872	6,8	
65B	530000	295000	20912	11640	17930	9980	13,5	22,5

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 100 km. Lorsque vous comparez ces capacités de charge à d'autres roulements, vous devez tenir compte du fait que certains fabricants basent les amplitudes de moments et les capacités de charge dynamiques sur une durée de vie de 50 km. Dans ce cas, vous devez diviser la capacité de charge dynamique du roulement définie pour 50 km par 1,23 afin que la comparaison soit exacte.
- 2. L'amplitude de moment et la capacité de charge statique correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.

Comparaison de la durée de vie des roulements

 $L = (C/F)^3 \times 100 \text{km}$ où:

L = durée de vie, km

C = charge dynamique de base, N

F = charge dynamique appliquée, N

 $C_{min} = F\left(\frac{L}{100}\right)^{1/3}$ où :

C_{min} = capacité de charge dynamique minimum requise, N

F = charge dynamique appliquée, N

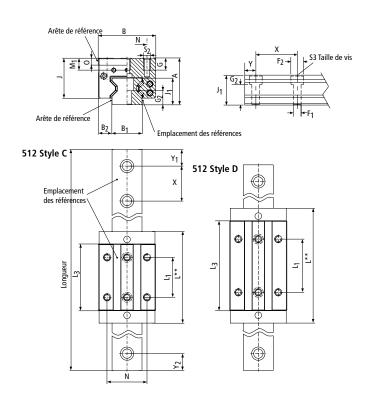
L = durée de vie requise, km

Paramètres de fonctionnement :

Vitesse maximum: 3 m/s Accélération maximum : 50 m/s²

Température : Min.: -40°C

Max.: 80°C


Pointe max.: 120°C courte durée*

*sans soufflet

Rouleaux Série 500

512 Styles C et D

512 Style C Rouleau étroit

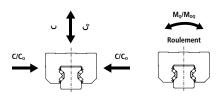
Taille	C	otes (mn	n)													Rouleau				
	A	В	B ₁ * +0,05	B ₂	J	J ₁	L**	L ₁	L ₃	X	N	S ₂	S_3	F ₁	F ₂	Ø	G	G ₂	M ₁	0
25	40	48	23	12,5	33,5	24,5	81	35	57	30	35	M6	M6	7	11	3,2	9	13	9,5	7,5
35	55	70	34	18	47	32	109	50	76	40	50	M8	M8	9	15	4,5	12	15	14	8
45	70	86	45	20,5	60	40	137,5	60	100	52,5	60	M10	M12	14	20	5	18	21	18	10
55	80	100	53	23,5	67	48	163,5	75	120	60	75	M12	M14	16	24	6	19	26	19	12

512 Style D Rouleau long étroit

					,															
Taille	C	otes (mr														Rouleau				
	А	В	B ₁ * +0,05	B ₂	J	J ₁	L**	L ₁	L ₃	Х	N	S ₂	S ₃	F ₁	F ₂	Ø	G	G ₂	M ₁	0
25	40	48	23	12,5	33,5	24,5	103,4	50	79,4	30	35	M6	M6	7	11	3,2	9	13	9,5	7,5
35	55	70	34	18	47	32	136	72	103	40	50	M8	M8	9	15	4,5	12	15	14	8
45	70	86	45	20,5	60	40	172,5	80	135	52,5	60	M10	M12	14	20	5	18	21	18	10
55	80	100	53	23,5	67	48	205,5	95	162	60	75	M12	M14	16	24	6	19	26	19	12
65	90	126	63	31,5	76	58	251	120	201	75	76	M16	M16	18	26	7	20	32	13	15

* Tolérance standard. Tolérances spéciales inférieures disponibles à la demande. Pour plus d'informations, consultez l'un de nos ingénieurs spécialisés.

** Lorsque vous utilisez des plaques de lubrification ou des joints modulaires supplémentaires, la longueur totale L augmente. Pour plus d'informations, voir page 64-65. Longueur du rail à préciser à la commande ; Y1 = Y2 sauf spécification contraire à la commande.

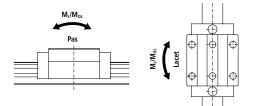

Rouleaux Série 500

512 Styles C et D

Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique M_I = Amplitude de moment de lacet et de pas dynamique

M₀ = Amplitude de moment de roulement dynamique


Amplitudes de moment et capacités de charge statiques

C₀ = Capacité de charge statique

M_{OL} = Amplitude de moment de lacet et de pas

dynamique

M₀₀ = Amplitude de moment de roulement statique

	Capacités	de charge		Mome	ents		Po	ids
Taille et	Co	C	M _{OQ}	M _Q	M _{OL}	M _L	Chariot	Rail
Style	(N)	(N)	(Nm)	(Nm)	(Nm)	(Nm)	(kg)	(kg/m)
25C	49800	27700	733	408	476	265	0,6	3,4
25D	70300	39100	1035	576	936	521	0,7	
35C	93400	52000	2008	1118	1189	662	1,5	6,5
35D	128500	71500	2762	1537	2214	1232	2,0	
45C	167500	93400	4621	2577	2790	1556	3,0	10,7
45D	229500	127800	6333	3527	5161	2874	4,0	
55C	237000	131900	7771	4325	4738	2637	4,5	15,2
55D	324000	180500	10624	5919	8745	4872	6,1	
65D	530000	295000	20912	11640	17930	9980	10,4	22,5

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 100 km. Lorsque vous comparez ces capacités de charge à d'autres roulements, vous devez tenir compte du fait que certains fabricants basent les amplitudes de moments et les capacités de charge dynamiques sur une durée de vie de 50 km. Dans ce cas, vous devez diviser la capacité de charge dynamique du roulement définie pour 50 km par 1,23 afin que la comparaison soit exacte.
- 2. L'amplitude de moment et la capacité de charge statique correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.

Comparaison de la durée de vie des roulements

 $L = (C/F)^3 \times 100 \text{km}$ où:

L = durée de vie, km

C = charge dynamique de base, N F = charge dynamique appliquée, N

C_{min} = capacité de charge

dynamique minimum requise, N F = charge dynamique appliquée, N

L = durée de vie requise, km

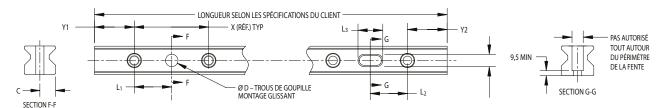
Paramètres de fonctionnement:

Vitesse maximum: Accélération maximum: 50 m/s²

-40°C Température: Min.: Max.: 80°C

Pointe max. : 120°C courte durée*

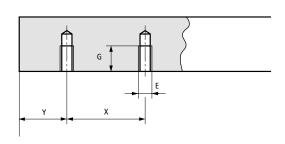
*sans soufflet


Modifications des rails

Les rails peuvent être dotés de trous de goupilles, de trous radiaux ou de trous coaxiaux. Veuillez nous soumettre un schéma de vos besoins. Notre équipe d'ingénieurs spécialisés établira un devis.

Longueur maximum d'un rail d'une pièce

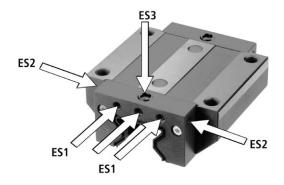
Taille (mm)	25	35	45	55	65
Maximum Longueur			6000mm		


Options de rails standard supplémentaires

Option	Taille	D +0,013	L ₁	L ₂	L ₃	С
-		-0	±0,12	±0,40	+1,5 -0	±0,05
	25		15	15		11,5
	35		20	20		17
DH1	45	8			12	22,5
	55		30	30		26,5
	65					31,5
	25	S.O.	S.O.	S.O.	S.O.	S.O.
	35		20	20		17
DH2	45	10			15	22,5
	55	10	30	30	15	26,5
	65					31,5
	25	S.O.	S.O.	S.O.	S.O.	S.O.
	35	ა.ს.	3.0.	3.0.	ა.0.	
DH3	45					22,5
	55	12	30	30	18	26,5
	65					31,5
	25	S.O.	S.O.	S.O.	S.O.	S.O.
	35		0,787"	0,787"		0,669"
DH4	45	3/8"			0,550"	0,886"
	55	3/0	1,181"	1,181"	0,550	1,043"
	65					1,240"
	25	0.0				
	35	S.O.	S.O.	S.O.	S.O.	S.O.
DH5	45	4 (0)	4 404 "	4 404 "		0,886"
	55	1/2"	1,181"	1,181"	0,750"	1,043"
	65					1,240"

Toutes les cotes sont exprimées en mm, sauf spécification contraire. Y1 = Y2, sauf spécification contraire.

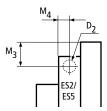
Rail 522 Type U - Fixation par le dessous

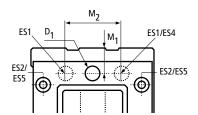

Taille	Х	E	G (mm)	Poids (kg/pouce)
25	30	M6	12	3,4
35	40	M8	15	6,5
45	52,5	M12	19	10,7
55	60	M14	22	15,2
65	75	M16	25	22,5

Y1 = Y2 sauf spécification contraire à la commande.

Options d'orifices de lubrification

Le chariot standard est doté en son centre d'un composant de lubrification droit. L'embout d'extrémité du chariot est doté, en option, de plusieurs orifices de lubrification et de canaux de lubrification. Il est fourni en standard avec l'orifice central de l'embout bouché. Ces options peuvent être facilement modifiées sur site ou ajoutées directement en usine. (Non disponible pour la taille 25.)

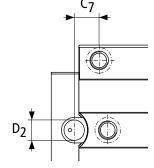

Option	Orifice	Canal de lubrification
ES1 ²	Décentrage des orifices - des deux côtés - tous les quatre	Canal standard
ES2	Orifices sur le côté - des deux côtés - tous les quatre	Canal standard
ES31	Orifice sur le dessus	Canal standard
ES42	Décentrage des orifices - des deux côtés - tous les quatre	Circuit de canal individuel
ES5	Décentrage des orifices - des deux côtés - tous les quatre	Circuit de canal individuel


- Un joint torique ou un adaptateur est requis pour joindre correctement les surfaces d'ajustement afin d'éviter les fuites de graisse ou d'huile.
 Un joint torique ou un adaptateur est fourni avec cette option.
 L'adaptateur est destiné aux chariots de styles C et D.
 Les options de lubrification sont disponibles dans les tailles 35, 45, 55 et 65 uniquement.
- 2. Cette option ne peut pas être utilisée en combinaison avec des accessoires modulaires supplémentaires.
- 3. La vis de pression est installée dans l'orifice d'entrée standard lorsque les options ES2 et ES3 sont spécifiées.
- Les orifices situés sur le côté et le dessus sont des embouts pleins.
 Lors de la modification sur site, ces orifices doivent être percés pour être utilisés.

Emplacements des orifices de lubrification. Avant de l'embout d'extrémité au-dessus du rail et de la glissière.

Taille	Style	M ₁	M ₂	M ₄	M ₃	D ₁	D ₂
	Α	5,5					
25	В	0,0	S.O.	S.O.	S.O.	M6	S.O.
23	С	9,5	3.0.	3.0.	3.0.	IVIO	3.0.
	D	9,0					
	Α	7			7		
35	В	<i>'</i>	32	6,5	′	M6	M6
33	С	14	32	0,5	14	IVIO	IVIO
	D	14			14		
	Α	8			8		
45	В	٥	40	7,5	0	M6	M6
40	С	18	40	7,5	18	IVIO	IVIO
	D	10			10		
	Α	9			9		
55	В	ย	50	8,5	ย	M6	M6
ວວ	С	19	30	0,0	19	IVIO	IVIO
	D	19			19		
65	В	13	64	12,5	13	M6	M6
US	D	13	04	12,3	13	IVIO	IVIO

Toutes les cotes sont en mm.



- D1 et D2 sont des orifices filetés présents dans l'embout d'extrémité pour assurer l'intégrité et la durabilité appropriées de la connexion.
- Les chariots sont expédiés avec un dispositif de graissage dans l'emballage (composant 530LN). Voir page 70 pour plus d'informations.

Options d'orifices de lubrification (suite)

Emplacements des orifices de lubrification. Orifice sur le dessus. « ES3 »

Taille	Style	C7	D1	D2	D3	D4	Adaptateur ¹
	Α	12,0					S.O.
25	В	23,2	6,75	10	1,78	6	3.0.
23	С	17,0	0,75	10	1,70	ľ	532ES3ADP25
	D	20,7					332L33AD1 23
	Α	14,0					S.O.
35	В	27,5	6,75	10	1,78	6	3.0.
30	С	20,0	0,75	10	1,70	٥	532ES3ADP35
	D	22,5					JOZEGOADF 30
	Α	17,0		75 10	10 1,78	6	S.O.
45	В	34,5	6,75				S.U.
40	С	27,0	0,75		10	1,70	ľ
	D	34,5					332L33AD1 43/33
	Α	21,5					S.O.
55	В	42,5	6,75	10	1,78	6	3.0.
55	С	31,5	0,73	10	1,70	١	532ES3ADP45/55
	D	42,5					332E03AD1 +3/33
65	В	54,0	6.5	10	2	6	S.O.
UO	D	49,0	6,5	10		0	3.0.

D1 = Diamètre interne du joint torique

D2 = Diamètre de l'avant-trou

D3 = Épaisseur du joint torique

 ${f D4}$ = Diamètre max. du diamètre de l'orifice de lubrification, vu de dessus

Toutes les cotes sont en mm.

Graisses

Les chariots standard sont enduits d'un conservateur gras destiné à protéger les rouleaux contre la corrosion pendant le stockage et le transport. Les chariots sont disponibles en standard avec l'ensemble de lubrifiants suivant.

Option	Туре	Remarques	Viscosité	Plage de températures		
G1	Mobilux [®] EP2	Graisse NLGI2 tout usage	160 cSt @40 °C	−20 °C à 130 °C		
G2	Krytox [®] GPL227	NLGI 2 haute température	440 cSt @40 °C	−30 °C à 288 °C		
G3	Thomson LinearLube Graisse NLGI2 classe alimentaire 350 cSt @40 °C -54 °C à 230 °C					
GS	Graisse spécifiée par le client					

Autres graisses disponibles à la demande. Consultez les ingénieurs spécialisés de Thomson.

^{1.} Adaptateur fourni avec l'option ES3.

Fine couche chromée dense

Les rails et les chariots sont revêtus d'une fine couche chromée dense d'une épaisseur de 2 à 4µm. Conséquence de cette plage d'épaisseur par rapport aux plages de tolérance dans les différentes catégories de précision, les rails ne sont disponibles qu'en une seule pièce mesurant jusqu'à 3 mètres de long dans la catégorie de précision Standard ; les longueurs supérieures peuvent être assemblées bout à bout.

Gamme de chariots avec fine couche chromée dense

				Précharge			Rail standard	Longueur max. rail d'une pièce
Туре	Style	Taille	Précision	0,03C	0,08C	0,13C	approprié	(mm)
		25	Р	512P25A1D	512P25A2D	512P25A3D	522P25AD	3000
	A	35	Р	512P35A1D	512P35A2D	512P35A3D	522P35AD	3000
	A	45	Р	512P45A1D	512P45A2D	512P45A3D	522P45AD	3000
		55	Р	512P55A1D	512P55A2D	512P55A3D	522P55AD	3000
		25	Р	512P25B1D	512P25B2D	512P25B3D	522P25AD	3000
		35	Р	512P35B1D	512P35B2D	512P35B3D	522P35AD	3000
	В	45	Р	512P45B1D	512P45B2D	512P45B3D	522P45AD	3000
		55	Р	512P55B1D	512P55B2D	512P55B3D	522P55AD	3000
512		65	Р	512P65B1D	512P65B2D	512P65B3D	522P65AD	3000
512		25	Р	512P25C1D	512P25C2D	512P25C3D	522P25AD	3000
		35	Р	512P35C1D	512P35C2D	512P35C3D	522P35AD	3000
	С	45	Р	512P45C1D	512P45C2D	512P45C3D	522P45AD	3000
		55	Р	512P55C1D	512P55C2D	512P55C3D	522P55AD	3000
		25	Р	512P25D1D	512P25D2D	512P25D3D	522P25AD	3000
		35	Р	512P35D1D	512P35D2D	512P35D3D	522P35AD	3000
	D	45	Р	512P45D1D	512P45D2D	512P45D3D	522P45AD	3000
		55	Р	512P55D1D	512P55D2D	512P55D3D	522P55AD	3000
		65	Р	512P65D1D	512P65D2D	512P65D3D	522P65AD	3000

Remarque: les chariots et les rails chromés sont conçus et fabriqués pour être utilisés simultanément. Si un chariot non chromé est utilisé sur un rail chromé, la précharge du chariot augmente d'environ une catégorie.

Si un chariot chromé est utilisé sur un rail non chromé, la précharge diminue d'environ une catégorie. Cela résulte de l'épaisseur de la couche chromée.

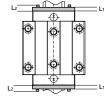
Combinaisons d'accessoires modulaires et taille de vis

				Taille		
Option	Description	25	35	45	55	65
N³	Réservoir d'huile	Vis à tête creuse/basse M4x30	Vis à tête creuse/basse M4x35	Vis à tête creuse/basse M5x45	Vis à tête creuse/basse M6x45	Vis à tête creuse/basse M6x55
W³	Frotteur en caoutchouc	Vis à tête M4x25 creuse/basse	Vis à tête M4x30 creuse/basse	Vis à tête M5x35 creuse/basse	Vis à tête M6x35 creuse/basse	Vis à tête M6x40 creuse/basse
V ³	Frotteur en Viton	Vis à tête creuse/basse M4x25	Vis à tête creuse/basse M4x30	Vis à tête creuse/basse M5x35	Vis à tête creuse/basse M6x35	Vis à tête creuse/basse M6x40
Z³	Racleur métallique	Vis à tête creuse/basse M4x20	Vis à tête creuse/basse M4x25	Vis à tête creuse/basse M5x30	Vis à tête creuse/basse M6x35	Vis à tête creuse/basse M6x35
C³	Fixations de soufflets	Vis à tête creuse/plate M4x20	Vis à tête creuse/plate M4x25	Vis à tête creuse/plate M5x25	Vis à tête creuse/plate M6x30	Vis à tête creuse/plate M6x35
NW	Réservoir d'huile + frotteur	Vis à tête creuse/basse M4x40	Vis à tête creuse/basse M4x45	Vis à tête creuse/basse M5x50	Vis à tête creuse/basse M6x55	Vis à tête creuse/basse M6x65
NWZ	Réservoir d'huile, frotteur + Racleur	Vis à tête creuse/basse M4x40	Vis à tête creuse/basse M4x45	Vis à tête creuse/basse M5x55	Vis à tête creuse/basse M6x60	Vis à tête creuse/basse M6x65
NWC	Réservoir d'huile, frotteur + Fixations de soufflets	Vis à tête creuse/plate M4x40	Vis à tête creuse/plate M4x45	Vis à tête creuse/plate M5x50	Vis à tête creuse/plate M6x55	Vis à tête creuse/plate M6x65
NWZC	Réservoir d'huile, frotteur, racleur + fixations de soufflets	Vis à tête creuse/plate M4x40	Vis à tête creuse/plate M4x50	Vis à tête creuse/plate M5x55	Vis à tête creuse/plate M6x60	Vis à tête creuse/plate M6x65
NZ	Réservoir d'huile + racleur	Vis à tête creuse/basse M4x35	Vis à tête creuse/basse M4x40	Vis à tête creuse/basse M5x50	Vis à tête creuse/basse M6x55	Vis à tête creuse/basse M6x60
NZC	Réservoir d'huile, racleur + Fixations de soufflets	Vis à tête creuse/plate M4x35	Vis à tête creuse/plate M4x40	Vis à tête creuse/plate M5x50	Vis à tête creuse/plate M6x55	Vis à tête creuse/plate M6x60
NC	Réservoir d'huile + fixations de soufflets	Vis à tête creuse/plate M4x35	Vis à tête creuse/plate M4x40	Vis à tête creuse/plate M5x50	Vis à tête creuse/plate M6x55	Vis à tête creuse/plate M6x60
WC	Frotteur + fixations de soufflets	Vis à tête creuse/plate M4x25	Vis à tête creuse/plate M4x30	Vis à tête creuse/plate M5x30	Vis à tête creuse/plate M6x35	Vis à tête creuse/plate M6x40
WZ	Frotteur + racleur	Vis à tête creuse/basse M4x25	Vis à tête creuse/basse M4x30	Vis à tête creuse/basse M5x35	Vis à tête creuse/basse M6x35	Vis à tête creuse/basse M6x40
WZC	Frotteur, racleur + Fixations de soufflets	Vis à tête creuse/plate M4x25	Vis à tête creuse/plate M4x30	Vis à tête creuse/plate M5x35	Vis à tête creuse/plate M6x35	Vis à tête creuse/plate M6x40
VZ	Frotteur en Viton + racleur	Vis à tête creuse/basse M4x25	Vis à tête creuse/basse M4x30	Vis à tête creuse/basse M5x35	Vis à tête creuse/basse M6x35	Vis à tête creuse/basse M6x40
ZC	Racleur + fixations de soufflets	Vis à tête creuse/plate M4x20	Vis à tête creuse/plate M4x25	Vis à tête creuse/plate M5x25	Vis à tête creuse/plate M6x30	Vis à tête creuse/plate M6x35

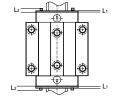
^{1.} Toutes les attaches ont un filetage standard.

^{2.} Consultez Thomson pour les options non répertoriées, une étude d'ingénierie est requise.

^{3.} Chaque accessoire modulaire est fourni avec les vis appropriées pour une installation sur un embout d'extrémité uniquement et non pour des combinaisons d'accessoires modulaires.



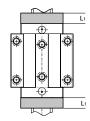
Accessoires de lubrification et joints modulaires


Frotteurs supplémentaires 532WR – Frotteur en caoutchouc 532VR – Frotteur en Viton®

Taille	Caoutchouc Référence	Viton [®] Référence	L1 (mm)	L2 (mm)	Poids (kg)
25	532WR25	532VR25	7	4	0,005
35	532WR35	532VR35	7	4	0,012
45	532WR45	532VR45	7	4	0,024
55	532WR55	532VR55	7	4	0,029
65	532WR65	532VR65	7	4	0,040

Racleur métallique 532ZZ

Taille	Référence	L1 (mm)	L2 (mm)	Poids (kg)
25	532ZZ25	1,5	4	0,011
35	532ZZ35	1,5	4	0,022
45	532ZZ45	1,5	4	0,034
55	532ZZ55	1,5	4	0,044
65	532ZZ65	1,5	4	0,078


L1 = épaisseur du frotteur, L2 = sortie max. des têtes de vis

Réservoir d'huile 5320W

Taille	Plaque de lubrification	L1 (mm)	Poids (kg)
25	5320W25	12,7	0,013
35	5320W35	16,7	0,032
45	5320W45	19	0,056
55	5320W55	22	0,103
65	5320W65	25,2	0,179

L1 = épaisseur de la plaque de lubrification, les têtes des vis sont enfoncées dans la plaque

L1 – épaisseur du frotteur, L2 – sortie max. des têtes de vis

Lorsque vous utilisez plusieurs plaques différentes, cumulez l'épaisseur de chacune de ces plaques afin d'obtenir une longueur de chariot globale précise.

Exemple: Chariot 512 de taille 45 avec joints modulaires 5320W et 532WR sur les deux côtés:

Longueur du chariot (L)	= 137,5
5320W L1 x 2	= 19 x 2
532WR L1 x 2	= 7 x 2
532WR L2 x 2	= 4 x 2
Longueur totale	= 193,5 mm

Chaque accessoire modulaire est fourni avec les vis appropriées pour son installation sur l'embout d'extrémité. Lorsque vous utilisez des combinaisons de joints modulaires, des vis plus longues peuvent être requises. Les tailles suivantes sont disponibles en stock.

Chariot 511 de taille 35 avec joint modulaire 5310W des deux côtés et joints modulaires 531VR d'un côté :

Longueur du chariot (L)	= 109
5320W L1 x 2	= 16,7 x 2
532VR L1 x 1	= 7 x 1
532VR L2 x 1	= 4 x 1
Longueur totale	= 153,4 mm

Informations sur les cotes de soufflets

Trois styles de soufflets sont disponibles :

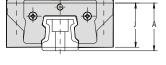
532BB

« Low Profile » (Discret) dont les cotes externes n'excèdent pas le chariot, en polyester enduit de polyuréthane, température ambiante maximum de 80 °C.

532BC

« High Compression » (Haute compression), en fibre de verre revêtue de Téflon [®] antiétincelles et conçu pour accepter les compressions élevées ; à utiliser lorsque la température ambiante maximum excède les pointes de température des roulements.

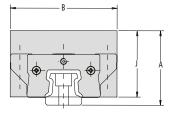
532BW


« Walk On » (Accessoire) capable de supporter les environnements les plus difficiles, y compris les applications de soudage et de polissage, avec une capacité de charge des roulements de 90kg.

Les soufflets sont compatibles avec les autres joints modulaires en option, ce qui permet d'améliorer sans difficultés l'efficacité des joints standard. Leur installation est simple et rapide. Il est possible de les installer ultérieurement. Pour pouvoir accueillir la plaque d'adaptation des fixations de soufflets 532CR, les extrémités des rails doivent être percées. Cette option peut être facilement installée sur site ou ajoutée en usine.

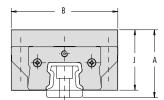
532BB Soufflets « Low Profile » (Discret)

Taille	Réf.	В	J	Α	CR
25	532BB25	47	30,5	36	0,17
35	532BB35	70	41,3	47,5	0,15
45	532BB45	81	51	59	0,15
55	532BB55	99	58	69	0,10
65	532BB65	109	65	79	0,10


Le client doit spécifier la longueur étendue à la commande, voir page 118 pour les calculs nécessaires.

532BC Soufflets « High Compression » (Haute compression)

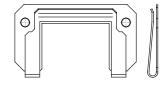
Taille	Réf.	В	J	Α	CR
25	532BC25	67	40,5	46	0,10
35	532BC35	90	51,3	57,5	0,07
45	532BC45	101	61	69	0,07
55	532BC55	119	68	79	0,06
65	532BC65	129	75	89	0,06


Le client doit spécifier la longueur étendue à la commande, voir page 118 pour les calculs nécessaires.

532BW Soufflets « Walk On » (Accessoire)

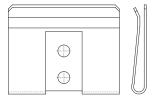
Taille	Réf.	В	J	Α	CR
25	532BW25	57	35,5	41	0,19
35	532BW35	77	42	48,2	0,19
45	532BW45	101	53	61	0,15
55	532BW55	111	58	69	0,15
65	532BW65	119	70	84	0,15

Le client doit spécifier la longueur étendue à la commande, voir page 118 pour les calculs nécessaires.

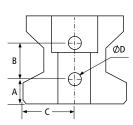


Plaques d'adaptation pour la fixation de soufflets

532CC Fixations des soufflets pour chariots-Plaque de fixation


La plaque de fixation servant à fixer les soufflets sur les chariots 532CC permet d'assembler les soufflets et les chariots. La plaque d'adaptation des fixations de soufflets est en acier.

Taille	Réf.
25	532CC25
35	532CC35
45	532CC45
55	532CC55
65	532CC65



532CR Fixations des soufflets pour rails-Plaque de fixation

La plaque de fixation des soufflets sur les rails 532CR permet d'assembler les soufflets et les rails. Les trous de fixation peuvent être percés à l'extrémité du rail en cas d'installation ultérieure ou ajoutés en usine. La plaque d'adaptation des fixations de soufflets est en acier.

			Détail de l'usinage des rails				V	is¹			
Taille	Réf.	A	В	C	Profondeur Min.	Profondeur Max.	Taille	Pas	Longueur	Туре	Y Min. ²
25	532CR25	7,24		11,50							12
35	532CR35	11,00		17,00						Vis bouton	20
45	532CR45	15,01	10	22,50	7,7	9,70	M4	0,70	10,00	à tête	22
55	532CR55	18,01		26,50						cylindrique	24
65	532CR65	24,00		31,50							28

Toutes les cotes sont en mm.

- 1. Deux vis sont fournies avec chaque fixation de soufflet sur le rail.
- 2. Cote Y min. pour assurer que la profondeur percée n'atteint pas le trou de montage du rail.

Informations sur les guidages à rouleaux sur rail Série 500

Outils et accessoires de maintenance et d'installation : Rail d'assemblage — 532MT

Un rail d'assemblage est requis lorsque le chariot doit être séparé du rail, puis réinstallé durant l'installation. Il est recommandé de laisser le chariot sur le rail d'assemblage pour protéger les rouleaux contre tout agent contaminant. Le chariot peut être fixé. Le rail d'assemblage est en plastique.

Taille	Rail standardl Référence	Longueur (mm)	Poids (kg)
25	532MT25	145	0,062
35	532MT35	185	0,152
45	532MT45	230	0,317
55	532MT55	265	0,525
65	532MT65	320	0,914

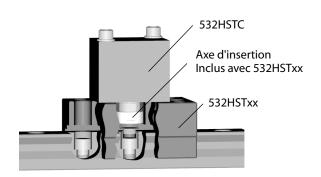
Embouts et ruban pour rails standard

Embouts HP en plastique

Taille	Référence	Qté par pack	Poids (kg)
25	532HP25	25	0,007
35	532HP35	25	0,014
45	532HP45	25	0,025
55	532HP55	25	0,047
65	532HP65	25	0,053

Embouts HB en laiton

Taille	Référence	Qté par pack	Poids (kg)
25	532HB25	1	0,002
35	532HB35	1	0,005
45	532HB45	1	0,008
55	532HB55	1	0,011
65	532HB65	1	0,013


Embouts HS en acier inoxydable à deux pièces

Taille	Référence	Qté par pack	Poids (kg)			
25	532HS25	1 ens.	0,003			
35	532HS35	1 ens.	0,008			
45	532HS45	1 ens.	0,012			
55	532HS55	1 ens.	0,019			
65	532HS65	1 ens.	0,026			

Ruban de mylar

Taille	Référence	Longueur
25	532RT25	3m
35	532RT35	3m
45	532RT45	3m
55	532RT55	3m
65	532RT65	3m

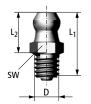
Outil d'installation HST en acier inoxydable et en laiton

Patin avec axe d'insertion	Poids (kg)
532HST25 Pour rail de taille 25	2,0
532HST35 Pour rail de taille 35	3,5
532HST45 Pour rail de taille 45	3,9
532HST55 Pour rail de taille 55	5,4
532HST65 Pour rail de taille 65	6,5
Cylindre hydraulique (pour toutes tailles)	Poids (kg)
532HSTC ¹	0,53

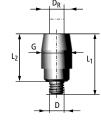
1. Taille de composant hydraulique 1/4"-18 NPT, pression max. 120 x 103 hPa (120 bar).

Rail Série 500 en option avec baguette de couverture en acier inoxydable

	Embouts baguette de couverture des rails	Outil de montage	Embouts de remplacement	Baguette de couverture des rails standard	Baguette de couverture des rails	Longueur PC simple max. (mm)
Taille	Référence ¹	Référence	Référence ²	Référence ³	Largeur (mm)	
25	532RCS25	532RCT25	532RCP25	522P25C	15	6000
35	532RCS35	532RCT35	532RCP35	522P35C	19	6000
45	532RCS45	532RCT45	532RCP45	522P45C	25	6000
55	532RCS55	532RCT55	532RCP55	522P55C	28,5	6000
65	532RCS65	532RCT65	532RCP65	522P65C	32	6000


- Le client doit spécifier la longueur du rail à utiliser à la commande.
 La pièce fournie mesure 2 à 3,5 mm de plus afin de permettre l'installation correcte des embouts d'extrémité.
- 2. Deux embouts sont fournis avec chaque pièce 532RCS commandée.
- Qualité de précision P illustrée à titre d'exemple, précisions S et U disponibles.
- 4. La baguette de couverture ne doit pas être installée plus de 3 fois.

Composants de lubrification


530LN

Raccord de lubrification de type hydraulique, droit.

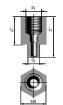
530BF6 = 2,5 mm/530BF8 = 4 mm

D	L ₁	L ₂	SW
M6	16	10,5	7

^{*} Remarque : 1 pièce incluse avec chaque

530LA3

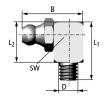
Raccord droit à visser M3 Pour tubes de diamètre ext. $D_R = 3 \text{ mm}$


D	ØG	L ₁	L ₂
M3	6	12	9,5

530LN45

Raccord de lubrification de type hydraulique, incliné à 45°

D	L ₁	L ₂	В	SW
M6	21	15,5	15	9



530LA... Adaptateur

Adaptateur avec mèche d'insertion hexagonale

Pour tubes de diamètre ext. = 4 mm

BROCHE	D ₁	D ₂	Ц	L ₂
530LA4	G1/8	M6	20	14
530LA5	M8x1"	M6	20	14

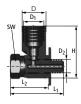
530LN90

Raccord de lubrification de type hydraulique, incliné à 90°

D	L ₁	L ₂	В	sw
M6	18	12,5	19	9

530LA6

Adaptateur, extérieur rond Pour tubes de diamètre ext. = 4 mm


D ₁	D ₂	L ₁	L ₂	Ø
M8x1"	M6	20	14	10

530LF3

Raccord de lubrification de type entonnoir M3

D	L ₁	L ₂	sw
М3	6,6	1,6	5

530BF... Compas articulés

Pour tubes de diamètre ext. 530BF6 = 2,5 mm/530BF8 = 4 mm

P/N	D ₁	D_2	L	L_2	Н
530BF6	M6x0,75	M6	22	16	18
530BF8	M8x1	M6	22	15,5	22

530LF6

Raccord de lubrification de type entonnoir M6

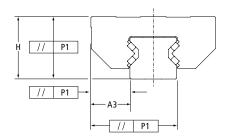
D	L ₁	L ₂	SW
M6	9,5	3	7

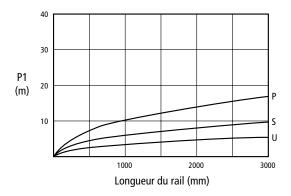
530LG

Pistolet de graissage pour raccord de lubrification de type entonnoir M3

L ₁	L ₁	ØD ₁	ØD ₂
210	55	34	5,5

Catégorie de précision


Trois tolérances permettent de décrire la précision d'un roulement sur rail : la tolérance de parallélisme, la variation de paire et la précision de l'assemblage. Ces trois tolérances sont mesurées de la base du rail au centre du dessus du chariot (H) et de l'arête de référence du rail au centre de l'arête de référence du chariot (A3).


La tolérance de parallélisme définit la tolérance sur les cotes H et A3 en tant que fonction de déplacement axial, mesurée à partir d'un chariot sur toute la longueur du rail dans le sens descendant. Ce paramètre est analogue à la rectitude du déplacement. En tant que tel, le parallélisme définit les attributs du rail seulement.

La précision de l'assemblage définit la tolérance sur les cotes H et A3 en tant que fonction d'un ensemble chariot-rail, mesurée à partir des cotes nominales.

La variation de paire définit la tolérance sur les cotes H et A3 en tant que fonction de chariots à la même position sur un même rail. Ce paramètre décrit la précision du chariot seulement.

La catégorie de précision sélectionnée détermine en partie la précision du système. D'autres facteurs, comme la planitude et la rectitude des surfaces de montage, affectent aussi considérablement la précision du système.

Tolérances

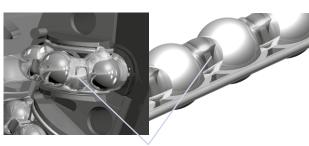
	(Catégorie de précision	
	P : Standard	S : Super précision	U : Ultraprécision
Tolérance de précision de l'assemblage sur les cotes H et A3 (mesurée au milieu du chariot, au niveau de n'importe quel point le long du rail)	±20	±10	±5
Variation de paire max. Variation des cotes H et A3 mesurée sur plusieurs chariots montés sur le même rail (mesurées au milieu du chariot à la même position sur le rail)	10	5	3
Tolérance de parallélisme	40	20	10

Toutes les valeurs sont exprimées en µm

Précharge

Trois catégories de précharge sont disponibles pour les chariots des guidages à rouleaux sur rail Série 500. La précharge réduit au mieux la déformation élastique causée par les forces extérieures pour une meilleure rigidité.

Combinaisons de précision de la précharge


Précision	Précharge		
Catégorie	0,03C1	0,08C1	0,13C1
P, S, U	1	2	3

1. C = Capacité de charge dynamique du roulement

Présentation des guidages linéaires sur rail Série 400 de Thomson

Lubrifiants

Caractéristiques et avantages

Le guidage linéaire sur rail Série 400 est le produit le plus récent de la gamme de guidages linéaires de Thomson. La Série 400 constitue une solution de rails économique pour les applications de transport exigeant une grande maîtrise des coûts. Elle permet des substitutions standard grâce à un profil et une configuration des trous respectant les normes du secteur. Les roulements à gorge de roulement à billes à double face assurent la conformité durant l'installation, ainsi qu'une capacité de charge identique dans toutes les directions. Les chariots à cage et sans cage utilisent la même conception de rail. Cela permet une gestion efficace du stock, car il suffit de stocker un seul type de rail, quel que soit le type de chariot.

Bruit et vibration réduits

Le tube à renvoi de billes en polymère réduit le bruit tout en préservant la lubrification.

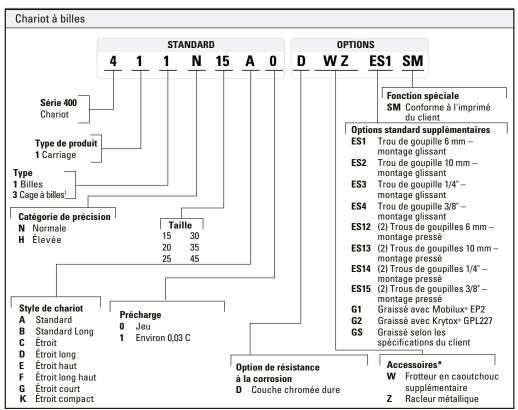
Accessoires modulaires disponibles

Joints à double lèvre standard et longitudinaux préservant la lubrification tout en protégeant le roulement des agents contaminants. Joints et racleurs supplémentaires disponibles.

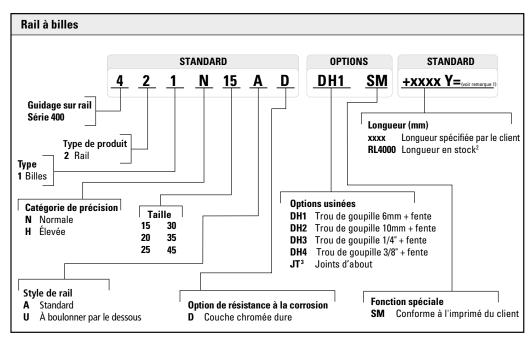
Canaux de lubrification

Des canaux conduisent le lubrifiant vers les différentes gorges de roulement à billes pour une efficacité optimale de la lubrification.

Gorges de roulement à billes à double face


Le guidage linéaire Série 400 utilise une structure de roulements face à face à 45°, pour une capacité de charge identique dans toutes les directions. Cette configuration en face à face a pour avantage principal que les rails sont beaucoup plus tolérants aux imprécisions de la surface de montage. Les fabricants de machines d'automatisation peuvent ainsi réduire encore leurs coûts en préparant des surfaces de montage qui ne respectent pas des tolérances très strictes.

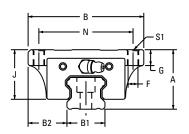
Cage à billes Série 400

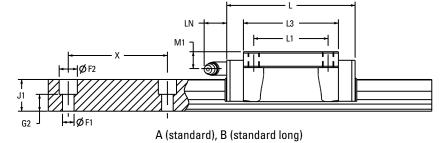

La cage à billes 413 en option apporte les avantages suivants :

- · Fonctionnement plus fluide
- Bruit réduit aux vitesses élevées
- Réservoirs séparés de lubrifiant des billes

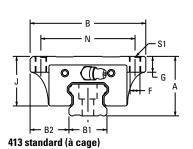
Composition des références Série 400

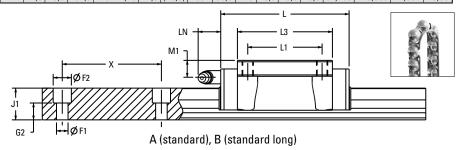
- 1. Le chariot ne retient pas les roulements à billes lorsque l'embout d'extrémité est retiré. Le retrait des embouts d'extrémité peut entraîner la perte des roulements à billes.
- Bloc de lubrification et soufflets longue durée en option, le cas échéant. Pour plus de détails, contactez le service client.



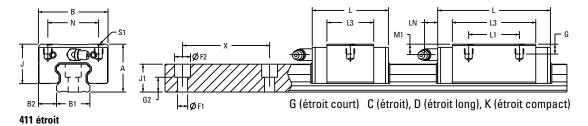

- 1. Y=Distance séparant l'extrémité du rail du centre du premier trou de montage, Y1 = Y2 sauf autre spécification.
- 2. Les longueurs de rails en stock sont des longueurs variables : la longueur peut dépasser la longueur spécifiée et Y1/Y2 ne sont pas identiques. À utiliser uniquement par le client, qui coupe à la longueur souhaitée.
- 3. Schéma du client requis pour tout devis et toute commande

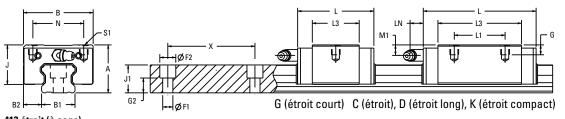
Des ensembles sont disponibles, reportez-vous à la page 121 pour obtenir les références détaillées de ces ensembles.


Spécifications Série 400



411 standard

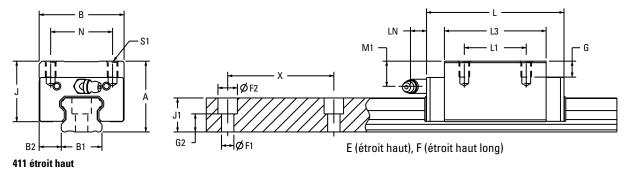

C	Eı	ısem	ble [ı	mm]					Ch	ariot	[mm]						Rail	[mm]				cité de arge	Poids du chariot	Poids du rail
Compo- sant	A	В	B2	J	L	N	L1	S1	F	G	L3	Huile H	M1	LN	B1 +0,02 -0,05	J1	X	F1	F2	G2	C [N]	CO [N]	[kg]	[kg/m]
411N15A0	24	47	16,0	20,7	58,6	38	30	M5	4,4	8,0	40,2	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	9,300	19,600	0,21	1,28
411N15B0	24	47	16,0	20,7	66,1	38	30	M5	4,4	8,0	47,7	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	11,300	23,700	0,23	1,28
411N20A0	30	63	21,5	25,5	69,3	53	40	M6	5,4	9,0	48,5	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	14,300	30,500	0,40	2,15
411N20B0	30	63	21,5	25,5	82,1	53	40	M6	5,4	9,0	61,3	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	18,600	39,500	0,46	2,15
411N25A0	36	70	23,5	30,2	79,2	57	45	M8	7,0	10,0	57,5	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,100	0,57	2,88
411N25B0	36	70	23,5	30,2	93,9	57	45	M8	7,0	10,0	72,2	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	25,900	52,800	0,72	2,88
411N30A0	42	90	31,0	35,0	94,8	72	52	M10	8,6	11,0	67,8	M6 X 1,0	8	(15,6)	28	22,8	80	9,0	14,0	10,8	29,700	54,600	1,10	4,45
411N30B0	42	90	31,0	35,0	105,0	72	52	M10	8,6	11,0	78,0	M6 X 1,0	8	(15,6)	28	22,8	80	9,0	14,0	10,8	38,500	70,700	1,34	4,45
411N35A0	48	100	33,0	40,5	111,5	82	62	M10	8,6	12,0	80,5	M6 X 1,0	8	(16,0)	34	26,0	80	9,0	14,0	14,0	42,400	81,100	1,50	6,25
411N35B0	48	100	33,0	40,5	123,5	82	62	M10	8,6	12,0	92,5	M6 X 1,0	8	(16,0)	34	26,0	80	9,0	14,0	14,0	52,900	101,400	1,90	6,25
411N45A0	60	120	37,5	51,1	129,0	100	80	M12	10,6	15,5	94,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	58,000	108,900	2,27	9,60
411N45B0	60	120	37,5	51,1	145,0	100	80	M12	10,6	15,5	110,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	69,000	129,500	2,68	9,60
411N55A0	70	140	43,5	57,3	155,0	116	95	M14	12,6	18,5	116,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	69,800	133,400	3,44	13,80
411N55B0	70	140	43,5	57,3	193,0	116	95	M14	12,6	18,5	154,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	94,200	178,900	4,63	13,80



0	Er	ısem	ble [mm]					Ch	ariot	[mm]					ı	Rail	[mm]				cité de arge	Poids du chariot	Poids du rail
Compo- sant	A	В	B2	J	L	N	L1	S1	F	G	L3	Huile H	M1	LN	B1 +0,02 -0,05	J1	X	F1	F2	G2	C [N]	C0 [N]	[kg]	[kg/m]
413N15A0	24	47	16,0	20,7	58,6	38	30	M5	4,4	8,0	40,2	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	9,300	19,600	0,21	1,28
413N15B0	24	47	16,0	20,7	66,1	38	30	M5	4,4	8,0	47,7	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	11,300	23,700	0,23	1,28
413N20A0	30	63	21,5	25,5	69,3	53	40	M6	5,4	9,0	48,5	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	14,300	30,500	0,40	2,15
413N20B0	30	63	21,5	25,5	82,1	53	40	M6	5,4	9,0	61,3	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	18,600	39,500	0,46	2,15
413N25A0	36	70	23,5	30,2	79,2	57	45	M8	7,0	10,0	57,5	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,100	0,57	2,88
413N25B0	36	70	23,5	30,2	93,9	57	45	M8	7,0	10,0	72,2	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	25,900	52,800	0,72	2,88
413N30A0	42	90	31,0	35,0	94,8	72	52	M10	8,6	11,0	67,8	M6 X 1,0	8	(15,6)	28	22,8	80	9,0	14,0	10,8	29,700	54,600	1,10	4,45
413N30B0	42	90	31,0	35,0	105,0	72	52	M10	8,6	11,0	78,0	M6 X 1,0	8	(15,6)	28	22,8	80	9,0	14,0	10,8	38,500	70,700	1,34	4,45
413N35A0	48	100	33,0	40,5	111,5	82	62	M10	8,6	12,0	80,5	M6 X 1,0	8	(16,0)	34	26,0	80	9,0	14,0	14,0	42,400	81,100	1,50	6,25
413N35B0	48	100	33,0	40,5	123,5	82	62	M10	8,6	12,0	92,5	M6 X 1,0	8	(16,0)	34	26,0	80	9,0	14,0	14,0	52,900	101,400	1,90	6,25
413N45A0	60	120	37,5	51,1	129,0	100	80	M12	10,6	15,5	94,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	58,000	108,900	2,27	9,60
413N45B0	60	120	37,5	51,1	145,0	100	80	M12	10,6	15,5	110,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	69,000	129,500	2,68	9,60
413N55A0	70	140	43,5	57,3	155,0	116	95	M14	12,6	18,5	116,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	69,800	133,400	3,44	13,80
413N55B0	70	140	43,5	57,3	193,0	116	95	M14	12,6	18,5	154,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	94,200	178,900	4,63	13,80

Spécifications Série 400

Compo-	Er	ısem	ıble [ı	mm]					Char	iot [mı	m]				R	ail [n	nm]			•	ité de Irge	Poids du chariot	Poids du rail
sant	A	В	B2	J	L	N	L1	S1	G	L3	Huile H	M1	LN	B1 +0,02 -0,05	J1	X	F1	F2	G2	C [N]	0 [N]	[kg]	[kg/m]
411N15G0	24	34	9,5	20,7	40,6	26		M4	4,8	22,2	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	4,600	9,800	0,10	1,28
411N15C0	24	34	9,5	20,7	58,6	26	26	M4	4,8	40,2	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	9,300	19,600	0,17	1,28
411N15D0	24	34	9,5	20,7	66,1	26	26	M4	4,8	47,7	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	11,300	23,700	0,18	1,28
411N20G0	28	42	11,0	23,5	48,3	32		M5	5,5	27,5	M6 X 1,0	5,1	(15,6)	20	16,3	60	6,0	9,5	7,8	7,400	15,700	0,17	2,15
411N20C0	30	44	12,0	25,5	69,3	32	36	M5	6,5	48,5	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	14,300	30,500	0,31	2,15
411N20K0	28	42	11,0	23,5	69,3	32	32	M5	5,5	48,5	M6 X 1,0	5,1	(15,6)	20	16,3	60	6,0	9,5	7,8	14,300	30,500	0,26	2,15
411N25G0	33	48	12,5	27,2	54,0	35		M6	6,8	32,3	M6 X 1,0	7,2	(15,6)	23	19,2	60	7,0	11,0	10,2	10,300	21,000	0,21	2,88
411N25C0	36	48	12,5	30,2	79,2	35	35	M6	9,0	57,5	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,000	0,40	2,88
411N25D0	36	48	12,5	30,2	108,6	35	50	M6	9,0	86,9	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	29,200	63,300	0,67	2,88
411N25K0	33	48	12,5	27,2	79,2	35	35	M6	6,8	57,5	M6 X 1,0	7,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,100	0,38	2,88
411N30G0	42	60	16,0	35,0	64,2	40		M8	10,0	37,2	M6 X 1,0	8,0	(15,6)	28	22,8	80	9,0	14,0	10,8	14,700	27,000	0,50	4,45
411N30C0	42	60	16,0	35,0	94,8	40	40	M8	10,0	67,8	M6 X 1,0	8,0	(15,6)	28	22,8	80	9,0	14,0	10,8	29,700	54,600	0,80	4,45
411N30D0	42	60	16,0	35,0	130,5	40	60	M8	10,0	103,5	M6 X 1,0	8,0	(15,6)	28	22,8	80	9,0	14,0	10,8	42,900	86,700	1,16	4,45
411N35G0	48	70	18,0	40,5	75,5	50		M8	10,0	44,5	M6 X 1,0	8,0	(15,6)	34	26,0	80	9,0	14,0	14,0	21,200	40,700	0,80	6,25
411N35C0	48	70	18,0	40,5	111,5	50	50	M8	10,0	80,5	M6 X 1,0	8,0	(15,6)	34	26,0	80	9,0	14,0	14,0	42,400	81,100	1,20	6,25
411N35D0	48	70	18,0	40,5	153,5	50	72	M8	10,0	122,5	M6 X 1,0	8,0	(15,6)	34	26,0	80	9,0	14,0	14,0	58,300	125,300	1,84	6,25
411N45C0	60	86	20,5	51,1	129,0	60	60	M10	15,5	94,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	58,000	108,900	1,64	9,60
411N45D0	60	86	20,5	51,1	174,0	60	80	M10	15,5	139,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	79,700	163,300	2,42	9,60
411N55C0	70	100	23,5	57,3	155,0	75	75	M12	18,0	116,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	69,800	133,400	2,67	13,80
411N55D0	70	100	23,5	57,3	210,0	75	95	M12	18,0	171,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	157,700	253,600	3,97	13,80



413 étroit (a ca	ge)																					
Compo-	Eı	sem	ble [r	nm]					Char	iot [mr	n]				Ra	ail [n	nm]			•	ité de Irge	Poids du chariot	Poids du rail
sant	A	В	B2	J	L	N	L1	S 1	G	L3	Huile H	M1	LN	B1 +0,02 -0,05	J1	X	F1	F2	G2	C [N]	C0 [N]	[kg]	[kg/m]
413N15G0	24	34	9,5	20,7	40,6	26		M4	4,8	22,2	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	4,600	9,800	0,10	1,28
413N15C0	24	34	9,5	20,7	58,6	26	26	M4	4,8	40,2	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	9,300	19,600	0,17	1,28
413N15D0	24	34	9,5	20,7	66,1	26	26	M4	4,8	47,7	M4 X 0,7	5,5	(5,0)	15	13,0	60	4,5	7,5	7,0	11,300	23,700	0,18	1,28
413N20G0	28	42	11,0	23,5	48,3	32		M5	5,5	27,5	M6 X 1,0	5,1	(15,6)	20	16,3	60	6,0	9,5	7,8	7,400	15,700	0,17	2,15
413N20C0	30	44	12,0	25,5	69,3	32	36	M5	6,5	48,5	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	14,300	30,500	0,31	2,15
413N20K0	28	42	11,0	23,5	69,3	32	32	M5	5,5	48,5	M6 X 1,0	5,1	(15,6)	20	16,3	60	6,0	9,5	7,8	14,300	30,500	0,26	2,15
413N25G0	33	48	12,5	27,2	54,0	35		M6	6,8	32,3	M6 X 1,0	7,2	(15,6)	23	19,2	60	7,0	11,0	10,2	10,300	21,000	0,21	2,88
413N25C0	36	48	12,5	30,2	79,2	35	35	M6	9,0	57,5	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,100	0,40	2,88
413N25D0	36	48	12,5	30,2	108,6	35	50	M6	9,0	86,9	M6 X 1,0	10,2	(15,6)	23	19,2	60	7,0	11,0	10,2	29,200	63,300	0,67	2,88
413N25K0	33	48	12,5	27,2	79,2	35	35	M6	6,8	57,5	M6 X 1,0	7,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,000	0,38	2,88
413N30G0	42	60	16,0	35,0	64,2	40		M8	10,0	37,2	M6 X 1,0	8,0	(15,6)	28	22,8	80	9,0	14,0	10,8	14,700	27,000	0,50	4,45
413N30C0	42	60	16,0	35,0	94,8	40	40	M8	10,0	67,8	M6 X 1,0	8,0	(15,6)	28	22,8	80	9,0	14,0	10,8	29,700	54,600	0,80	4,45
413N30D0	42	60	16,0	35,0	130,5	40	60	M8	10,0	103,5	M6 X 1,0	8,0	(15,6)	28	22,8	80	9,0	14,0	10,8	42,900	86,700	1,16	4,45
413N35G0	48	70	18,0	40,5	75,5	50		M8	10,0	44,5	M6 X 1,0	8,0	(15,6)	34	26,0	80	9,0	14,0	14,0	21,200	40,700	0,80	6,25
413N35C0	48	70	18,0	40,5	111,5	50	50	M8	10,0	80,5	M6 X 1,0	8,0	(15,6)	34	26,0	80	9,0	14,0	14,0	42,400	81,100	1,20	6,25
413N35D0	48	70	18,0	40,5	153,5	50	72	M8	10,0	122,5	M6 X 1,0	8,0	(15,6)	34	26,0	80	9,0	14,0	14,0	58,300	125,300	1,84	6,25
413N45C0	60	86	20,5	51,1	129,0	60	60	M10	15,5	94,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	58,000	108,900	1,64	9,60
413N45D0	60	86	20,5	51,1	174,0	60	80	M10	15,5	139,0	M8 X 1,25	14,4	(16,0)	45	31,1	105	14,0	20,0	14,1	79,700	163,300	2,42	9,60
413N55C0	70	100	23,5	57,3	155,0	75	75	M12	18,0	116,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	69,800	133,400	2,67	13,80
413N55D0	70	100	23,5	57,3	210,0	75	95	M12	18,0	171,0	M8 X 1,25	14,0	(16,0)	53	38,0	120	16,0	23,0	18,0	157,700	253,600	3,97	13,80

Spécifications Série 400

711 6000	iiuut																						
Compo-	E	nsem	ıble [ı	mm]					Char	iot [m	m]				R	ail (m	m]			•	cité de arge	Poids du chariot	Poids du rail
sant	A	В	B2	J	L	N	L1	S1	G	L3	Huile H	M1	LN	B1 +0,02 -0,05	J1	X	F1	F2	G2	C [N]	C0 [N]	[kg]	[kg/m]
411N15E0	28	34	9,5	24,7	58,6	26	26	M4	6,0	40,2	M4 X 0,7	9,5	(5,0)	15	13,0	60	4,5	7,5	7,0	9,300	19,600	0,19	1,28
411N20F0	30	44	12,0	25,5	82,1	32	50	M5	6,5	61,3	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	18,600	39,500	0,36	2,15
411N25E0	40	48	12,5	34,2	79,2	35	35	M6	9,0	57,5	M6 X 1,0	14,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,100	0,45	2,88
411N25F0	40	48	12,5	34,2	93,9	35	50	M6	9,0	72,2	M6 X 1,0	14,2	(15,6)	23	19,2	60	7,0	11,0	10,2	25,900	52,800	0,66	2,88
411N30E0	45	60	16,0	38,0	94,8	40	40	M8	12,0	67,8	M6 X 1,0	11,0	(15,6)	28	22,8	80	9,0	14,0	10,8	29,700	54,600	0,91	4,45
411N30F0	45	60	16,0	38,0	105,0	40	60	M8	12,0	78,0	M6 X 1,0	11,0	(15,6)	28	22,8	80	9,0	14,0	10,8	38,500	70,700	1,04	4,45
411N35E0	55	70	18,0	47,5	111,5	50	50	M8	12,0	80,5	M6 X 1,0	15,0	(15,6)	34	26,0	80	9,0	14,0	14,0	42,400	81,100	1,50	6,25
411N35F0	55	70	18,0	47,5	123,5	50	72	M8	12,0	92,5	M6 X 1,0	15,0	(15,6)	34	26,0	80	9,0	14,0	14,0	52,900	101,400	1,80	6,25
411N45E0	70	86	20,5	61,1	129,0	60	60	M10	18,0	94,0	M8 X 1,25	24,4	(16,0)	45	31,1	105	14,0	20,0	14,1	58,000	108,900	2,28	9,60
411N45F0	70	86	20,5	61,1	145,0	60	60	M10	18,0	110,0	M8 X 1,25	24,4	(16,0)	45	31,1	105	14,0	20,0	14,1	69,000	129,500	2,67	9,60
411N55E0	80	100	23,5	67,3	155,0	75	75	M12	18,0	116,0	M8 X 1,25	14	(16,0)	53	38,0	120	16,0	23,0	18,0	69,800	133,400	3,42	13,80
411N55F0	80	100	23.5	67.3	193.0	75	95	M12	18.0	154.0	M8 X 1,25	14	(16,0)	53	38.0	120	16.0	23.0	18.0	94.200	178,900	5.08	13.80

713 61101111		,	9-,																				
Compo-	Eı	nsem	ıble [ı	mm]					Char	iot [mr	n]				R	ail [r	nm]				cité de arge	Poids du chariot	Poids du rail
sant	A	В	B2	J	L	N	L1	S1	G	L3	Huile H	M1	LN	B1 +0,02 -0,05	J1	X	F1*	F2*	G2	C [N]	C0 [N]	[kg]	[kg/m]
413N15E0	28	34	9,5	24,7	58,6	26	26	M4	6,0	40,2	M4 X 0,7	9,5	(5,0)	15	13,0	60	4,5	7,5	7,0	9,300	19,600	0,19	1,28
413N20F0	30	44	12,0	25,5	82,1	32	36	M5	6,5	61,3	M6 X 1,0	7,1	(15,6)	20	16,3	60	6,0	9,5	7,8	18,600	39,500	0,36	2,15
413N25E0	40	48	12,5	34,2	79,2	35	35	M6	9,0	57,5	M6 X 1,0	14,2	(15,6)	23	19,2	60	7,0	11,0	10,2	20,100	41,000	0,45	2,88
413N25F0	40	48	12,5	34,2	93,9	35	35	M6	9,0	72,2	M6 X 1,0	14,2	(15,6)	23	19,2	60	7,0	11,0	10,2	25,900	52,800	0,66	2,88
413N30E0	45	60	16,0	38,0	94,8	40	40	M8	12,0	67,8	M6 X 1,0	11,0	(15,6)	28	22,8	80	9,0	14,0	10,8	29,700	54,600	0,91	4,45
413N30F0	45	60	16,0	38,0	105,0	40	40	M8	12,0	78,0	M6 X 1,0	11,0	(15,6)	28	22,8	80	9,0	14,0	10,8	38,500	70,700	1,04	4,45
413N35E0	55	70	18,0	47,5	111,5	50	50	M8	12,0	80,5	M6 X 1,0	15,0	(15,6)	34	26,0	80	9,0	14,0	14,0	42,400	81,100	1,50	6,25
413N35F0	55	70	18,0	47,5	123,5	50	50	M8	12,0	92,5	M6 X 1,0	15,0	(15,6)	34	26,0	80	9,0	14,0	14,0	52,900	101,400	1,80	6,25
413N45E0	70	86	20,5	61,1	129,0	60	60	M10	18,0	94,0	M8 X 1,25	24,4	(16,0)	45	31,1	105	14,0	20,0	14,1	58,000	108,900	2,28	9,60
413N45F0	70	86	20,5	61,1	145,0	60	80	M10	18,0	110,0	M8 X 1,25	24,4	(16,0)	45	31,1	105	14,0	20,0	14,1	69,000	129,500	2,67	9,60
413N55E0	80	100	23,5	67,3	155,0	75	75	M12	18,0	116,0	M8 X 1,25	14	(16,0)	53	38,0	120	16,0	23,0	18,0	69,800	133,400	3,42	13,80
413N55F0	80	100	23,5	67,3	193,0	75	95	M12	18,0	154,0	M8 X 1,25	14	(16,0)	53	38,0	120	16,0	23,0	18,0	94,200	178,900	5,08	13,80

^{*}Remarque : Les cotes des trous de montage des chariots 411 et 413F sont différentes.

Série 400 : précision, tailles et fonctionnement fluide

Calcul de la durée de vie des roulements

L = $(C/F)^3$ x 50km $C_{min} = \left(\frac{L}{50}\right)^{1/3} F$

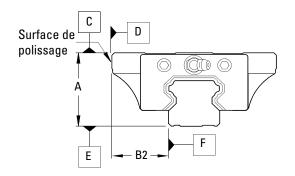
: où

 $L = \text{dur\'ee de vie, km} \qquad \qquad C_{\text{min}} = \text{capacit\'e de charge} \\ C = \text{capacit\'e de charge} \qquad \qquad \text{dynamique minimum requise, N} \\ \text{dynamique 50 km} \qquad \qquad F = \text{charge dynamique} \\$

F = charge dynamique appliquée, N

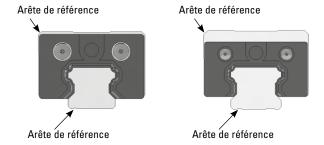
appliquée, N L = durée de vie requise, km

Paramètres de fonctionnement :

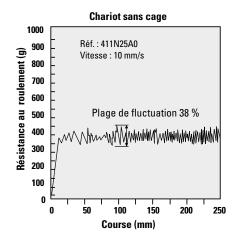

Vitesse maximum : 5 m/s
Accélération maximum : 100 m/s²

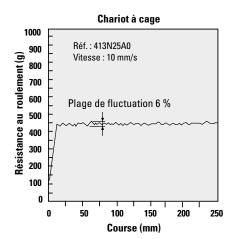
Température : Min. : -40°C

Max.: 80°C


Pointe max. : 120°C courte durée*

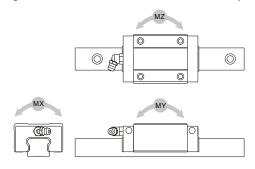
*sans soufflet




Catégorie	Normale	Élevée
Composant	(N)	(H)
Tolérance de hauteur (A)	± 0,1	± 0,04
Tolérance de largeur (B2)	± 0,1	± 0,04
Variation de paire max. (ΔA)	0,03	0,02
Variation de paire max. (ΔB2)	0,03	0,02
Tolérance de parallélisme de la surface du chariot C par rapport à la surface E.	Δ C, voir	Fig. 1-1
Tolérance de parallélisme de la surface du chariot D par rapport à la surface F.	Δ D, voir	Fig. 1-1

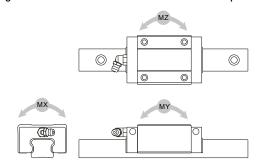
Toutes les cotes sont en mm

Chariot à cage à billes 413 : fonctionnement plus fluide



Série 400 : moment nominal de chariot standard 411

Les applications monorail et monochariot nécessitent le calcul des charges de moment pour les trois axes. Les configurations à rail double et à chariot double peuvent éliminer la charge de moment sur les axes sous contrainte.


- Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 50 km.
- Les amplitudes de moment correspondent à la charge de moment maximum qui doit être appliquée au roulement en l'absence de mouvement relatif entre le chariot et le rail.

Moment nominal du chariot 411 :

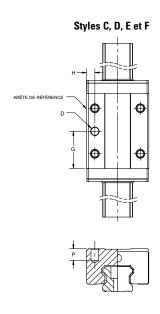
Modèle	Moment	statique autorisé de b	ase (Nm)	Moment of	dynamique autorisé de	base (Nm)
Wiodele	MX	MY	MZ	MX	MY	MZ
411N15A0	135	118	118	65	56	56
411N15B0	164	169	169	78	80	80
411N15C0	135	118	118	65	56	56
411N15D0	170	168	168	78	80	80
411N15E0	135	118	118	65	65	56
411N15G0	68	32	32	32	16	16
411N20A0	285	221	221	134	104	104
411N20B0	370	361	361	174	170	170
411N20C0	285	221	221	134	104	104
411N20F0	370	361	361	174	170	170
411N20G0	146	65	65	69	30	30
411N20K0	285	221	221	166	129	129
411N25A0	440	352	352	216	173	173
411N25B0	567	568	568	278	279	279
411N25C0	440	352	352	216	173	173
411N25D0	680	820	820	313	378	378
411N25E0	440	352	352	267	213	213
411N25F0	567	568	568	278	279	279
411N25G0	226	101	101	111	49	49
411N25K0	440	352	352	267	213	213
411N30A0	707	551	551	386	300	300
411N30B0	915	822	822	499	447	447
411N30C0	707	551	551	386	300	300
411N30D0	1123	1338	1338	555	661	661
411N30E0	707	551	551	386	300	300
411N30F0	915	822	822	499	447	447
411N30G0	350	150	150	191	81	81
411N35A0	1283	973	973	671	508	508
411N35B0	1604	1398	1398	838	730	730
411N35C0	1283	973	973	671	508	508
411N35D0	1983	2288	2288	922	1063	1063
411N35E0	1283	973	973	671	508	508
411N35F0	1604	1398	1398	838	730	730
411N35G0	644	270	270	336	141	141
411N45A0	2302	1525	1525	1225	812	812
411N45B0	2739	2124	2124	1458	1130	1130
411N45C0	2302	1525	1525	1225	812	812
411N45D0	3452	3382	3382	1684	1651	1651
411N45E0	2302	1525	1525	1225	812	812
411N45F0	2739	2124	2124	1458	1130	1133
411N55A0	3306	2306	2306	1730	1207	1207
411N55B0	4431	4104	4104	2335	2162	2162
411N55C0	3306	2306	2306	1730	1207	1207
411N55D0	6284	6462	6462	3165	3255	3255
411N55E0	3306	2306	2306	1730	1207	1207
411N55F0	4431	4104	4104	2335	2162	2162

Série 400 : moment nominal de chariot à cage 413

Les applications monorail et monochariot nécessitent le calcul des charges de moment pour les trois axes. Les configurations à rail double et à chariot double peuvent éliminer la charge de moment sur les axes sous contrainte.

Moment nominal du chariot à cage 413

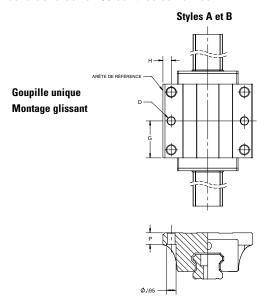
- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 50 km.
- Les amplitudes de moment correspondent à la charge de moment maximum qui doit être appliquée au roulement en l'absence de mouvement relatif entre le chariot et le rail.

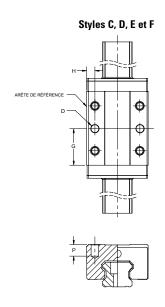

Modèle	Moment	statique autorisé de l	oase (Nm)	Moment o	lynamique autorisé de	base (Nm)
Modele	MX	MY	MZ	MX	MY	MZ
413N15A0	135	118	118	79	69	69
413N15B0	164	169	169	96	99	99
413N15C0	135	118	118	79	69	69
413N15D0	170	168	168	96	99	99
413N15E0	135	118	118	79	69	69
413N15G0	68	32	32	39	19	19
413N20A0	285	221	221	166	129	129
413N20B0	370	361	361	215	210	210
413N20C0	285	221	221	166	129	129
413N20F0	370	361	361	215	210	210
413N20G0	146	65	65	85	37	37
413N20K0	285	221	221	166	129	129
413N25A0	440	352	352	267	213	213
413N25B0	567	568	568	342	343	343
413N25C0	440	352	352	267	213	213
413N25D0	680	820	820	387	368	368
413N25E0	440	352	352	267	213	213
413N25F0	567	568	568	342	343	343
413N25G0	226	101	101	136	61	61
413N25K0	440	352	352	267	213	213
413N30A0	707	551	551	476	371	371
413N30B0	915	822	822	616	552	552
413N30C0	707	551	551	476	371	371
413N30D0	1123	1338	1338	686	816	816
413N30E0	707	551	551	476	371	371
413N30F0	915	822	822	616	552	552
413N30G0	350	150	150	235	101	101
413N35A0	1283	973	973	828	628	628
413N35B0	1604	1398	1398	1034	902	902
413N35C0	1283	973	973	828	628	628
413N35D0	1983	2288	2288	1138	1314	1314
413N35E0	1283	973	973	828	628	628
413N35F0	1604	1398	1398	1034	902	902
413N35G0	644	270	270	415	174	174
413N45A0	2302	1525	1525	1514	1003	1003
413N45B0	2739	2124	2124	1800	1396	1396
413N45C0	2302	1525	1525	1514	1003	1003
413N45D0	3452	3382	3382	2080	2038	2038
413N45E0	2302	1525	1525	1514	1003	1003
413N45F0	2739	2124	2124	1800	1396	1396
413N55A0	3306	2306	2306	2137	1490	1490
413N55B0	4431	4104	4104	2882	2669	2669
413N55C0	3306	2306	2306	2137	1490	1490
413N55D0	6284	6462	6462	3907	4018	4018
413N55E0	3306	2306	2306	2137	1490	1490
413N55F0	4431	4104	4104	2882	2669	2669

Série 400 : trous de goupilles de chariot

Des trous de goupilles sont généralement utilisés pour assurer l'alignement correct des chariots et des rails lors de leur installation et remplacement. Les options de trous de goupilles à montage glissant standard pour les chariots à billes standard de la série 400 sont les suivantes :

Goupille unique Montage glissant




40	10			ES1			ES2			ES3			ES4	
Style	Taille	G	ØD	Н	P	ØD	Н	P	ØD	Н	P	ØD	Н	P
	15	20,10	6	4,5	7	_	_	_	1/4"	4,5	7	_	_	_
	20	24,25	6	5	9	_	_	_	1/4"	5	9	_	_	_
Type A	25	28.75	6	6,5	9	_	_	_	1/4"	6,5	9	-	_	_
	30	33,90	6	9	12	10	9	12	1/4"	9	12	3/8"	9	12
	35	40,25	_	_	-	10	9	14	-	_	_	3/8"	9	14
	45	47,00	-	_	_	10	10	18	-	_	-	3/8"	10	18
	55	47,00	-	_	_	10	10	18	_	-	_	3/8"	10	18
	20	30,65	6	5	9	_	_	_	1/4"	5	9	-	_	_
	25	36,10	6	6,5	9	-	_	_	1/4"	6,5	9	-	-	_
Type B	30	39,00	6	9	12	10	9	12	1/4"	9	12	3/8"	9	12
	35	46,25	-	_	_	10	9	14	_	_	-	3/8"	9	14
	45	55,00	_	_	_	10	10	18	-	-	_	3/8"	10	18
	55	55,00	-			10	10	18			_	3/8"	10	18
	15	20,10	6	4	4,8	_	_	_	1/4"	4	4,8	_	_	_
	20	20,25	6	6	6,5	-	_	-	1/4"	6	6,5	-	-	_
Type C	25	28,75	6	6,5	9	_	_	-	1/4"	6,5	9		-	_
	30	33,90	6	10	10	10	10	10	1/4"	10	10	3/8"	10	10
	35	40,25	-			10	10	10			_	3/8"	10	10
	25	43,45	6	6,5	9	_	_	_	1/4"	6,5	9	_	_	_
Type D	30	51,75	6	10	10	10	10	10	1/4"	10	10	3/8"	10	10
	35	61,25	_	-	-	10	10	10	-	-	_	3/8"	10	10
	15	20,10	6	4	6	_	_	_	1/4"	4	6	_	_	_
Type E	25	28,75	6	6,5	9	_	_	_	1/4"	6,5	9	-	_	_
	30	33,90	6	10	12	10	10	12	1/4"	10	12	3/8"	10	12
	35	40,25	_	_	_	10	10	12	-	-	-	3/8"	10	12
	45	47,00	-	_	_	10	13	18	-	-	-	3/8"	13	18
	55	47,00	-	-	-	10	13	18	-	_	-	3/8"	13	18
	25	36,10	6	6,5	9	_	_	_	1/4"	6,5	9	_	_	-
Type F	30	39,00	6	10	12	10	10	12	1/4"	10	12	3/8"	10	12
	35	46,25	_	-	-	10	10	12	-	-	-	3/8"	10	12
	45	55,00	-	-	-	10	13	18	-	_	-	3/8"	13	18
	55	55,00	-	_	_	10	13	18	-	_	-	3/8"	13	18

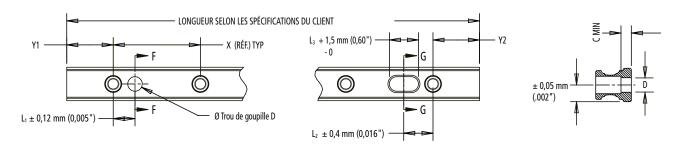
Toutes les cotes sont exprimées en mm, sauf spécification contraire. Tolérance de trou ϕ D +0/-0,013

Série 400 : trous de goupilles de chariot (suite)

Des trous de goupilles sont généralement utilisés pour assurer l'alignement correct des chariots et des rails lors de leur installation et remplacement. Les options de trous de goupilles à montage glissant standard pour les chariots à billes standard de la série 400 sont les suivantes :

40	0			ES12			ES13			ES14			ES15	
Style	Taille	G	ØD	Н	P	ØD	Н	P	ØD	Н	P	ØD	Н	P
-	15	20,10	6	4,5	7	_	_	_	1/4"	4,5	7	_	_	_
	20	24,25	6	5	9	_	_	_	1/4"	5	9	_	_	_
Type A	25	28,75	6	6,5	9	_	_	_	1/4"	6,5	9	_	_	_
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30	33,90	6	9	12	10	9	12	1/4"	9	12	3/8"	9	12
	35	40,25	_	_	_	10	9	14		_	_	3/8"	9	14
	45	47,00	-	_	_	10	10	18	_	_	_	3/8"	10	18
	55	47,00	-	-	-	10	10	18	-	-	-	3/8"	10	18
	20	30,65	6	5	9	_	_	_	1/4"	5	9	_	_	_
	25	36,10	6	6,5	9	_	_	_	1/4"	6,5	9	-	_	_
Type B	30	39,00	6	9	12	10	9	12	1/4"	9	12	3/8"	9	12
	35	46,25	-	_	_	10	9	14	_	_	_	3/8"	9	14
	45	55,00	_	-	_	10	10	18	_	_	_	3/8"	10	18
	55	55,00	_	_	_	10	10	18	-	_	_	3/8"	10	18
	15	20,10	6	4	4,8	_	_	_	1/4"	4	4,8	_	_	_
	20	20,25	6	6	6,5	-	_	_	1/4"	6	6,5	-	_	_
Type C	25	28,75	6	6,5	9	-	_	-	1/4"	6,5	9	-	_	_
	30	33,90	6	10	10	10	10	10	1/4"	10	10	3/8"	10	10
	35	40,25	_	-	-	10	10	10	-	_	-	3/8"	10	10
	25	43,45	6	6,5	9	_	_	_	1/4"	6,5	9	_	_	_
Type D	30	51,75	6	10	10	10	10	10	1/4"	10	10	3/8"	10	10
	35	61,25	-	-	-	10	10	10	-	-	-	3/8"	10	10
	15	20,10	6	4	6	_	_	_	1/4"	4	6	_	_	_
Type E	25	28,75	6	6,5	9	_	_	_	1/4"	6,5	9	-	_	_
	30	33,90	6	10	12	10	10	12	1/4"	10	12	3/8"	10	12
	35	40,25	-	_	_	10	10	12	_	_	-	3/8"	10	12
	45	47,00	_	-	-	10	13	18	-	_	_	3/8"	13	18
	55	47,00	_	-	-	10	13	18	_	_	-	3/8"	13	18
	25	36,10	6	6,5	9	_	_	_	1/4"	6,5	9	_	_	_
Type F	30	39,00	6	10	12	10	10	12	1/4"	10	12	3/8"	10	12
	35	46,25	-	_	-	10	10	12	_	_	_	3/8"	10	12
	45	55,00	_	-	-	10	13	18	-	_	_	3/8"	13	18
	55	55,00	_	-	-	10	13	18	-	_	_	3/8"	13	18

Toutes les cotes sont exprimées en mm, sauf spécification contraire. Tolérance de trou $\phi\,D$ +0/-0,013

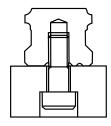


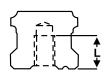
Série 400 : longueur des rails

Longueur maximum d'un rail d'une pièce

Taille (mm)	15	20	25	30	35	45	55
Longueur de rail une pièce				4 000 mm			

Options de rails standard supplémentaires

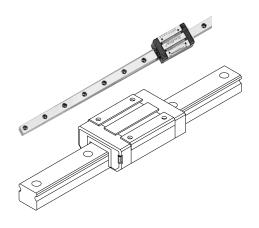



Option	D	L1	L2	L3	С
DH1	6 mm	30 mm	30 mm	10,2 mm	9,5 mm
DH2	10mm	30mm	30mm	13,8 mm	9,5 mm
DH3	1/4"	1,181"	1,181"	0,542"	3/8"
DH4	3/8"	1,181"	1,181"	0,542"	3/8"

Y1 = Y2 sauf spécification contraire à la commande

Le rail peut être doté de trous de goupilles, de trous radiaux ou de trous coaxiaux selon les besoins de votre application. N'hésitez pas à nous soumettre un schéma de vos besoins. Notre équipe d'ingénieurs spécialisés établira alors un devis ou sélectionnera l'une de nos options standard supplémentaires.

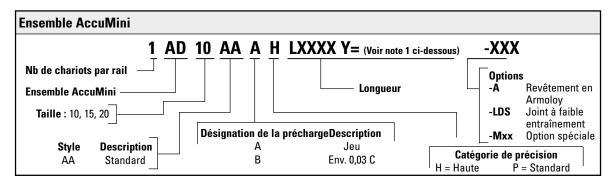
Rail avec trous taraudés

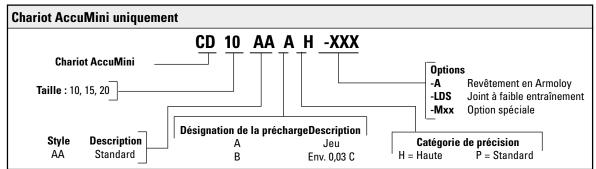

Le boulonnage du rail par le dessous permet d'obtenir une surface supérieure propre, sans ouvertures où les débris et autres particules peuvent s'accumuler.

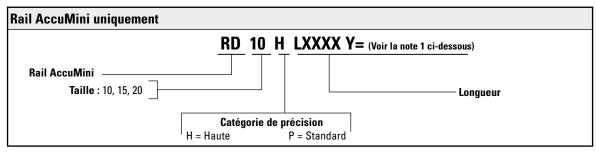
Taille (mm)	15	20	25	30	35	45	55
Vis	M5	M6	M6	M8	M8	M12	M14
Longueur du filetage	8 mm	10 mm	12 mm	15 mm	17 mm	24 mm	24 mm

^{*}Pour les tailles 25 et plus, un pas est présent autour du bas de la fente afin de contrôler la tolérance de largeur pendant le fraisage de la fente.

Guidages à billes linaires AccuMini

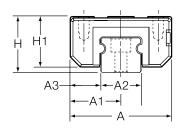

Ultracompacts et amplitude de moment de roulement élevée

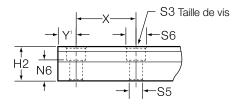


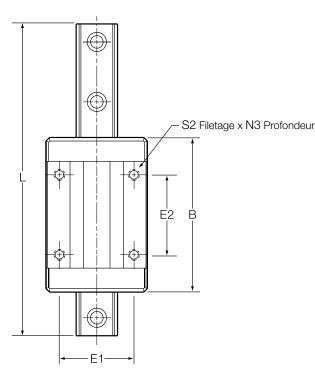

Les guidages à billes linéaires AccuMini apportent les avantages suivants:

- Contrôle des billes avancé, réduisant les frottements, pour un fonctionnement sans à-coups et silencieux à des vitesses élevées.
- Dispositif de nettoyage intégré sur toute la longueur, protégeant les composants critiques contre toute contamination, pour prolonger la durée de vie du système.
- Profil en arc brisé, pour une amplitude de moment de roulement élevée, essentielle dans les configurations monorail.
- Plaque de retenue en polymère sophistiquée, réduisant le bruit et l'inertie du système.
- Roulements à billes en acier inoxydable, résistant à la corrosion dans les environnements difficiles.

Composition et spécification des références



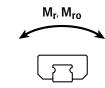

1. Y= Distance séparant l'extrémité du rail du centre du 1er trou de montage

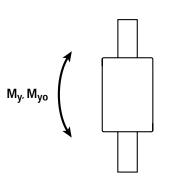

AccuMini

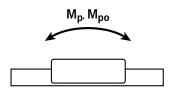
(Série Miniature) Profil fin et conception compacte

1. La cote Y est identique aux deux extrémités, sauf spécification contraire par le client.

REMARQUE:


les chariots de la série des guidages linéaires AccuMini ne sont pas dotés de plaque de retenue des billes. Si vous séparez le chariot du rail sans utiliser d'arbre d'arrêt, les billes s'échapperont.


Guidages linéaires de la série AccuMini


	(mm)													
Taille	Α	A 1	A2	А3	Н	H1	H2	В	E 1	E2	S2	S3	S5	S6
10	26	13	10	8	15	13	9	40	17	20	M2,5	M2,5	3	5,5
15	38	19	15	11,5	21	19	13	58	28	30	M4	M4	4,5	8
20	50	25	20	15	28	25,6	18	76	37	40	M5	M5	5,5	9,5

AccuMini

Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique

M_n =Amplitude de moment de pas dynamique

 $\mathbf{M_r}$ = Amplitude de moment de roulement dynamique

 $\mathbf{M_v} =$ Amplitude de moment de lacet dynamique

Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 100 km. Pour effectuer une comparaison avec des roulements prévus pour 50 km, divisez la capacité dynamique de ces derniers par 1,26.

Amplitudes de moment et capacités de charge statiques

Co = Capacité de charge statique

 M_{po} = Amplitude de moment de pas statique

 \mathbf{M}_{ro}^{\cdot} = Amplitude de moment de roulement statique

 M_{vo} = Amplitude de moment de lacet statique

Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.

Comparaison de la durée de vie des roulements

 $\mathbf{C}_{\min} = \mathbf{F} \left(\frac{\mathbf{L}}{100} \right)^{1/3}$ $\mathbf{o} \dot{\mathbf{u}} :$ $L = (C/F)^3 \times 100 \text{ km}$

où:

L = durée de vie, km C_{min} = capacité de charge C = charge dynamique de base, N dynamique minimum

F = charge dynamique requise, N appliquée, N

F = charge dynamique appliquée, N

L = durée de vie requise, km

Paramètres de fonctionnement

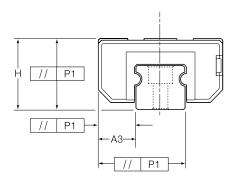
Vitesse maximum = 3 m/s Accélération maximum = 50 m/s² Température maximum = 80°C

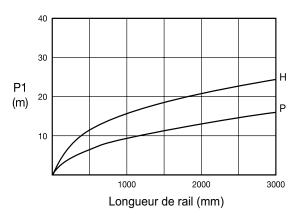
Série AccuMini

		(mm)			Charge Capacité	N (lbf)		Moment Amplitude		Nm bf-ft)	MA Chario	SSE t Rail
Taille	N3	N6	Х	L _{max‡}	C(@ 100 km)	C _o	$M_{p'}M_{y}$	$\mathbf{M}_{po},\mathbf{M}_{yo}$	$\mathbf{M}_{\mathbf{r}}$	\mathbf{M}_{ro}	kg	kg/m
10	4,5	5,5	25	1500	2820 (635)	5300 1,190	10 (7)	20 (15)	15 (11)	28 (21)	0,045	0,65
15	6	7,5	40	1500	6375 (1,430)	15200 (3,420)	35 (26)	66 (49)	51 (38)	96 (71)	0,141	1,42
20	8	9,5	60	3000	11870 (2,670)	23000 (5,170)	75 (55)	140 (105)	125 (92)	235 (175)z	0,345	2,55

[‡] Longueur de rail maximum dans une section. Il est possible d'assembler bout à bout plusieurs sections afin d'obtenir des longueurs supérieures.

AccuMini


Trois tolérances permettent de décrire la précision d'un roulement sur rail : la tolérance de parallélisme, la variation de paire et la précision de l'assemblage. Ces trois tolérances sont mesurées de la base du rail au centre du dessus du chariot (H) et de l'arête de référence du rail au centre de l'arête de référence du chariot (A3).


La tolérance de parallélisme définit la tolérance sur les cotes H et A3 en tant que fonction de déplacement axial, mesurée à partir d'un chariot sur toute la longueur du rail dans le sens descendant. Ce paramètre est analogue à la rectitude du déplacement. En tant que tel, le parallélisme définit les attributs du rail seulement.

La précision de l'assemblage définit la tolérance sur les cotes H et A3 en tant que fonction d'un ensemble chariot-rail, mesurée à partir des cotes nominales.

La variation de paire définit la tolérance sur les cotes H et A3 en tant que fonction de chariots à la même position sur un même rail. Ce paramètre décrit la précision du chariot seulement.

La catégorie de précision sélectionnée détermine en partie la précision du système. D'autres facteurs, comme la planitude et la rectitude des surfaces de montage, affectent aussi considérablement la précision du système.

Tolérances

	Catégorie	de précision
	H : Haute	P : Standard
Tolérance de précision de l'assemblage sur les cotes H et A3 (mesurée au milieu du chariot, au niveau de n'importe quel point le long du rail)	±40	±20
Variation de paire max. Variation des cotes H et A3 mesurée sur plusieurs chariots montés sur le même rail (mesurées au milieu du chariot à la même position sur le rail)	15	7
Tolérance de parallélisme	Voir les figu	ıres ci-dessus.

Toutes les valeurs sont exprimées en µm

Combinaisons de précision de la précharge

Catégorie	Préc	harge
de précision	Jeu jusqu'à 10 μm	Léger environ 0,03C ¹
Р	_	В
Н	Α	В

1. C = Capacité de charge dynamique du roulement.

Calculs

Pour déterminer la taille appropriée du chariot:

$$C_{\min} = F \bullet \left(\frac{L}{100} \right)^{1/3}$$

C_{min} = capacité de charge dynamique minimum requise du chariot (N)

F = charge équivalente sur le chariot (N)

L = durée de vie requise (km)

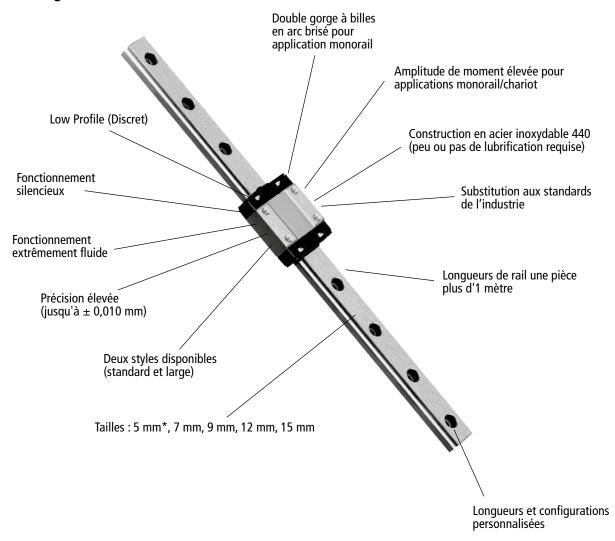
Pour déterminer la durée de vie :

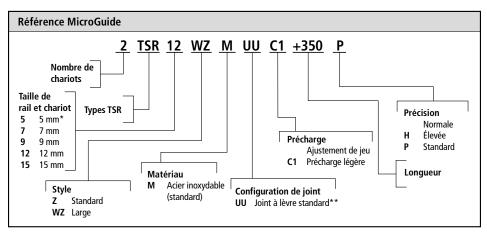
$$L = \left(\frac{C}{F}\right)^3 \bullet 100$$

L = durée de vie normale (km)

C = capacité de charge dynamique nominale du chariot (N)

F = charge équivalente sur le chariot (N)

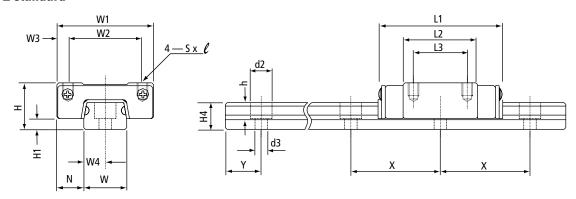

Conversions

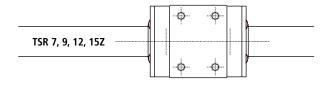

1 $lb_f = 4,448 \text{ N}$ 1 $kg_f = 9,8 \text{ N}$ 1 km = 39 370 pouces

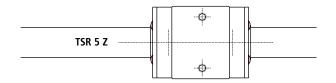
1 Nm = 0.7376 lb_f - ft

Paramètres de fonctionnement

Vitesse maximum = 3 m/sAccélération maximum = 50 m/s^2 Température maximum = $80 \, ^{\circ}\text{C}$




^{*}Pour la taille 5 mm, seulement 2 trous de montage par chariot sont présents.


^{**}Joints non disponibles pour la taille 5 mm.

TSR -Z standard

Longueurs de rails standard

Tailles	5	7	9	12	15
Longueurs standard	40 55 70 100 130 160	40 55 70 85 100 130 1000	55 75 95 115 135 155 175 175 195 275 1015	70 95 120 145 170 195 220 245 270 320 370 470 1020	150 230 310 430 550 670 1030
Х	15	15	20	25	40
Υ	5	5	7,5	10	15

Des longueurs supérieures sont disponibles avec les joints d'about pour les tailles 7 à 15.

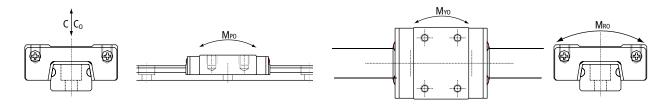
MicroGuide™ TSR -Z (standard)

Taille	Cotes	de l'ens	emble	Cotes du chariot					Cotes du rail									
Taille	Н	H1	N	W1	W2	W3	L1	L2	L3	Sxℓ	W	W4	Н4	d2	d3	h	Υ	Х
5	6	1,5	30,5	12	8	2	17	12,8	-	M2X1.51	5	20,5	4	30,5	2,4	1	5	15
7	8	1,5	5	17	12	2,5	23,5	13,5	8	M2X2,5	7	30,5	4,7	40,2	2,4	20,3	5	15
9	10	20,2	5,5	20	15	20,5	31	20,0	10	M3X3	9	4,5	50,5	6	30,5	3,3	70,5	20
12	13	3	70,5	27	20	3,5	35	20,8	15	M3X3,5	12	6	70,5	6	30,5	4,5	10	25
15	16	4	80,5	32	25	3,5	43	25,7	20	M3X4	15	70,5	9,5	6	3,5	40,5	15	40

⁽¹⁾ Pour la taille 5 mm, il n'y a que 2 trous de montage par chariot.

Remarque : toutes les cotes sont exprimées en mm sauf indication contraire. Des longueurs supérieures sont disponibles avec les joints d'about pour les tailles 7 à 15. Des tailles intermédiaires sont disponibles ; les cotes Y seront identiques sauf spécification contraire à la commande.

TSR -Z standard


Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique

Amplitudes de moment et capacités de charge statiques

Co = Capacité de charge statique

 $\begin{array}{l} M_{P0} = & Amplitude \ de \ moment \ de \ pas \ statique \\ M_{Y0} = & Amplitude \ de \ moment \ de \ lacet \ statique \\ M_{R0} = & Amplitude \ de \ moment \ de \ roulement \ statique \end{array}$

	Capacité de	charge (N)		Moments (Nm)	Masse		
Taille	Dynamique C ¹	Dynamique C ¹ Limite Co ^{2,3}		M_{YO}	M_{RO}	Chariot [kg]	Rail [kg/m]
5 ⁴	336	620	0,8	00,8	1,47	0,01	0,14
7	924	1440	2,55	2,55	5,10	0,02	0,23
9	1544	2360	5,10	5,10	10,4	0,02	0,32
12	2780	4220	8,04	8,72	14,7	00,4	0,58
15	4410	6570	16,5	17,9	30,2	00,7	0,93

Remarques:

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 50km.
- Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.
- 3. La limite de charge est la charge maximum pouvant être appliquée à un système. Il est important d'analyser l'application afin que les charges de choc et/ou de pointe n'excèdent pas la limite de charge.
- 4. La taille 5 ne comporte pas de joints d'extrémité. Des vis à tête cylindrique bombée sont requises pour monter le rail.

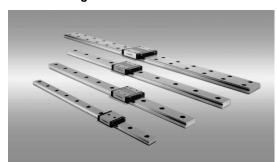
Calculs Charge/Durée de vie

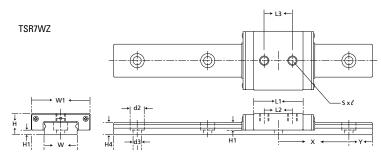
Pour déterminer la taille appropriée du chariot : Pour déterminer la durée de vie :

 $C_{min} = F \bullet \left(\frac{50}{L}\right)^{1/3} \qquad L = \left(\frac{C}{F}\right)^3 \bullet 50$

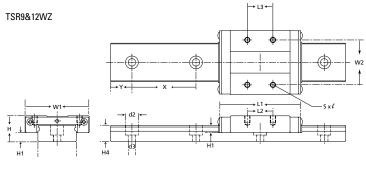
Cmin = capacité de charge dynamique L = durée de vie normale (km) minimum requise du chariot (N)

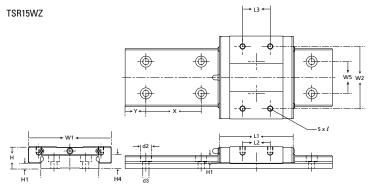
C = capacité de charge dynamique c = charge équivalente sur le chariot (N) nominale du chariot (N)


. = durée de vie requise (km) F = charge équivalente sur le chariot (N)


Paramètres de fonctionnement

Vitesse maximum : 3 m/s Accélération maximum : 50 m/s


TSR-WZ Large



Longueurs de rails standard

Tailles	7	9	12	15
Longueurs standard	50 85 170 100 130 260 350 440 530 620 800 1010	50 110 260 350 440 530 620 800 1010	70 150 310 390 470 630 790 950 1030	110 190 270 430 590 750 910 1030
Х	30	30	40	40
Υ	10	10	15	15

MicroGuide™ TSR-WZ Large

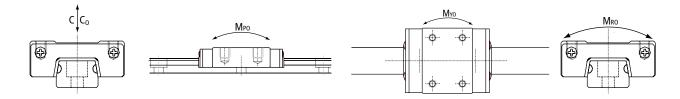
Taille	Cotes de l'ensemble Cotes du chariot						Cotes du rail										
Taille	Н	H1	N	W1	W2	L1	L2	L3	Sxℓ	W	W5	H4	d2	d3	h	Υ	Х
7*	9	2	5.5	25	-	31	21.5	12	M4X3.5	14	-	5.2	6	3.5	3.2	10	30
9	12	4.2	6	30	21	39	28	12	M2.6X3	18	-	7.5	6	3.5	4.5	10	30
12	14	4	8	40	28	44.5	30.5	15	M3X3.5	24	-	8.5	8	4.5	4.5	15	40
15	16	4	9	60	45	55.5	38.5	20	M4X4.5	42	23	9.5	8	4.5	4.5	15	40

Remarque : toutes les cotes sont exprimées en mm sauf indication contraire. Des longueurs supérieures sont disponibles avec les joints d'about.

Des tailles intermédiaires sont disponibles, les cotes Y seront identiques sauf spécification contraire à la commande.

^{*} Pour la taille 7 mm, seulement 2 trous de montage par chariot sont présents.

TSR-WZ Large


Amplitudes de moment et capacités de charge dynamiques

C = Capacité de charge dynamique

Amplitudes de moment et capacités de charge statiques

C = Capacité de charge statique

 $\begin{array}{ll} M_{P0} = & Amplitude \ de \ moment \ de \ pas \ statique \\ M_{Y0} = & Amplitude \ de \ moment \ de \ lacet \ statique \\ M_{R0} = & Amplitude \ de \ moment \ de \ roulement \ statique \end{array}$

	Capacité de c	harge (N)	Mo	oments (Nm)		Masse		
Taille	Dynamique C ¹	Limite Co ^{2,3}	M _{PO}	M_{YO}	M_{RO}	Chariot [kg]	Rail [kg/m]	
7	1370	2160	5.39	5.39	15.2	0.03	0.51	
9	2450	3920	16.3	16.3	36.0	0.04	1.08	
12	4020	6080	17.2	18.6	47.6	0.08	1.5	
15	6660	9800	35.2	38.2	137	0.17	3.0	

Remarques :

- 1. Les amplitudes de moment et les capacités de charge dynamiques sont basées sur une durée de vie de 50 km.
- 2. Les amplitudes de moment et les capacités de charge statiques correspondent à la charge de moment et à la charge radiale maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre le chariot et le rail.
- 3. La limite de charge est la charge maximum pouvant être appliquée à un système. Il est important d'analyser l'application afin que les charges de choc et/ou de pointe n'excèdent pas la limite de charge.

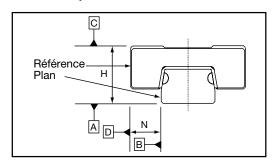
Calculs Charge/Durée de vie

Pour déterminer la taille appropriée du chariot : Pour déterminer la durée de vie :

 $C_{min} = F \bullet \left(\frac{50}{L}\right)^{1/3} \qquad L = \left(\frac{C}{F}\right)^3 \bullet 50$

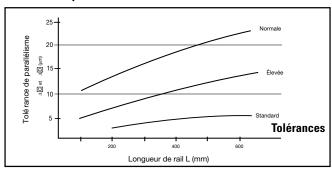
Cmin = capacité de charge dynamique L = durée de vie normale (km) minimum requise du chariot (N)

C = capacité de charge dynamique = charge équivalente sur le chariot (N) nominale du chariot (N)


= durée de vie requise (km) F = charge équivalente sur le chariot (N)

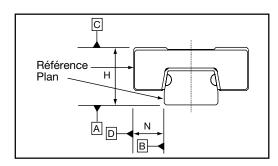
Paramètres de fonctionnement

Vitesse maximum : 3 m/s Accélération maximum : 50 m/s²

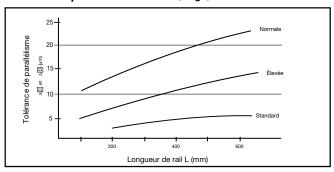


Tolérance de précision TSR-Z (standard)

Précis	sion de	TSI	R5 Z	TSR7 Z, TSI	R9 Z, TSR12	Z et TSR15 Z
	e partie	Normale (vide)	Standard P	Normale (vide)	Élevée H	Standard P
Hauteur	Tolérance de cotes	±0.030	±0.015	±0.040	±0.020	±0.010
Н	Tolérance de paire	0.015	0.005	0.030	0.015	0.007
Largeur	Tolérance de cotes	±0.030	±0.015	±0.040	±0.025	±0.015
N	Tolérance de paire	0.015	0.005	0.030	0.020	0.010


Tolérance de parallélisme TSR-Z (standard)

Ajustement supérieur TSR-Z (standard)


Série : type,	Jeux radiau	x (μm)
taille et styl e	ajustement de jeu(vide)	précharge légère C1
TSR5 Z	0~+1.5	-1.5~0
TSR7 Z	±2	-3~0
TSR9 Z	±2	-4~0
TSR12 Z	±3	-6~0
TSR15 Z	±5	-10~0

Tolérance de précision TSR-WZ (large)

Précis	ion de		TSR WZ	
	e partie	Normale (vide)	Élevée H	Standard P
Hauteur	Tolérance de cotes	±0.040	±0.020	±0.010
Н	Tolérance de paire	0.030	0.015	0.007
Largeur	Tolérance de cotes	±0.040	±0.025	±0.015
N	Tolérance de paire	0.030	0.020	0.010

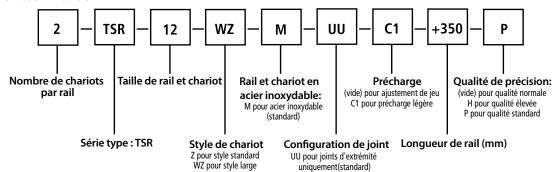
Tolérance de parallélisme TSR-WZ (large)

Ajustement supérieur TSR-WZ (large)

Série : type, taille et style	Jeux radiau	x (μm)
taille et style	ajustement de jeu(vide)	précharge légère C1
TSR7 WZ	±2	-3~0
TSR9 WZ	±2	-4~0
TSR12 WZ	±3	-6~0
TSR15 WZ	±5	-10~0

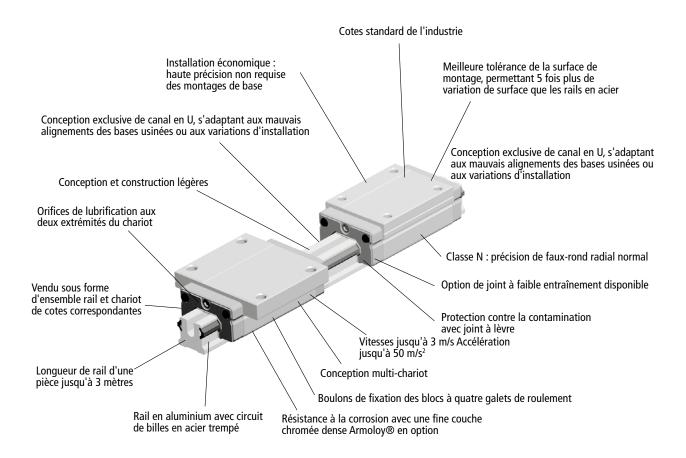
Longueurs de rails standard

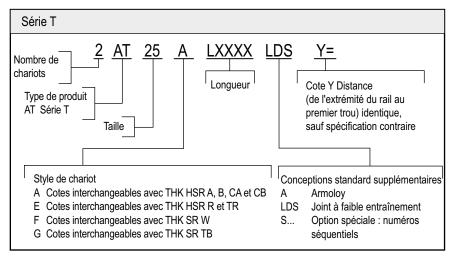
Tailles	7 WZ	9 WZ	12 WZ	15 WZ
	50	50	70	110
	110	110	150	190
	170	170	230	270
	260	260	310	430
	350	350	390	590
_	440	440	470	750
Longueurs	530	530	630	910
standard	620	620	790	1 030
	800	800	950	
	1 010	1 010	1 030	
Х	30	30	40	40
Y	10	10	15	15



Calculs Charge/Durée de vie

Conversions


Vitesse de déplacement maximum : $V_{max} = 3 \text{ m/s}$ Accélération maximum : $a_{max} = 50 \text{ m/s}^2$


Comment commander

Guidage sur rail Série T

Remarque: 1. Vendu en tant qu'ensemble uniquement

2. Les cotes des chariots sont ajustées à celles des rails lors de l'assemblage

Guidage à billes sur rail Série T

Caractéristiques

Les guidages à billes sur rail Série T de Thomson sont une solution légère, très souple et maniable, et constituent le choix idéal pour les systèmes à surfaces de montage de faible tolérance.

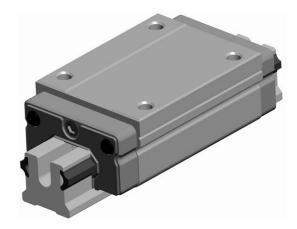
Matériaux

Les chariots et les rails à billes Thomson Série T sont fabriqués dans un alliage aluminium de qualité supérieure utilisé généralement en aéronautique. Le chariot est doté de plaques de roulement de charge en acier trempé. Les rails intègrent un circuit de billes personnalisé en acier trempé. Des contrôles qualité très stricts sont mis en oeuvre pour garantir l'homogénéité de l'acier dès la source et permettre ainsi à Thomson d'offrir un produit de qualité supérieure.

Légèreté

Le chariot et le rail en aluminium réduisent considérablement le poids total de l'ensemble, faisant des guidages Thomson Série T la solution idéale pour les applications exigeant une inertie liée au poids minimale, comme les avions, les bateaux, les automobiles, etc.

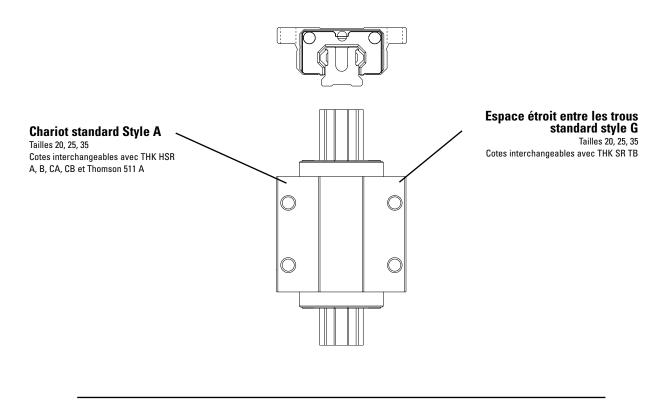
Précision

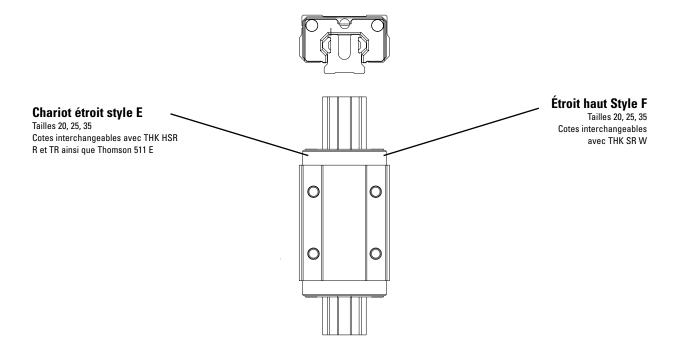

Grâce à sa grande tolérance face aux erreurs d'alignement, les guidages à billes de la série T sont disponibles dans une seule option de faux-rond radial de classe N.

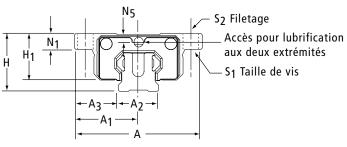
Facilité d'installation

Les guidages Thomson Série T peuvent être montés directement sur des bases non usinées sans altérer les performances globales du système et sans avoir à recourir à des calibres ou à des outils spéciaux pour s'assurer de la rectitude adéquate des rails et des bases. En éliminant le recours à de tels outils et aux bases usinées, le temps nécessaire à l'installation ou à la conception des machines est réduit de moitié, permettant ainsi de gagner un temps précieux et de faire des économies significatives.

Une solution interchangeable

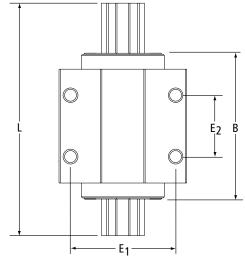

Les guidages Thomson Série T sont conçus conformément aux cotes et aux configurations de trous standard de l'industrie. En d'autres termes, ils peuvent être substitués à tout guidage linéaire tout acier classique disponible actuellement sur le marché.




Styles des chariots Série T



Guidage à billes sur rail Série T Styles A et G



t- sera identique aux deux extrémités, sauf spécification contraire.

Composants de lubrification fournis

Guidage sur rail standard haut Série T Style A

Tail	e A	A1	A2	А3	Н	H1	H2	В	E1	E2	S1	S2	S 3	S 5	S6	N1	N5	N6	Х	L _{max}
20	63	31.5	20	21.5	30	25	18	76	53	40	M5	M6	M5	5.8	9.5	10	6.25	7,5	60	3000
25	70	35	23	23.5	36	29.5	22	88	57	45	M6	M8	M6	7	10.7	12	8	10	60	3000
35	100	50	34	33	48	40	29	117	82	62	M8	M10	M8	9	14	15.26	6.6	11	80	3000

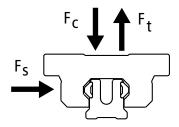
Toutes les cotes sont exprimées en mm, sauf spécification contraire

Guidage sur rail standard Série T Style G

Taill	e A	A1	A2	А3	Н	H1	H2	В	E1	E2	S1	S2	S3	S 5	S6	N1	N5	N6	Х	L _{max}
20	59	29.5	20	19.5	28	23	18	76	49	32	M5	M6	M5	5.8	9.5	8	4.25	7.5	60	3000
25	73	36.5	23	25	33	26.5	22	88	60	35	M6	M8	M6	7	10.7	9	5	10	60	3000
35	100	50	34	33	48	40	29	117	82	50	M8	M10	M8	9	14	15.26	6.6	11	80	3000

Guidage à billes sur rail Série T Styles A et G

Capacité de charge dynamique


C = Capacité de charge dynamique

La capacité de charge dynamique est basée sur une durée de vie de 100 km. Pour effectuer une comparaison avec des roulements prévus pour 50 km, divisez la capacité dynamique de ces derniers par 1,26.

Capacité de charge statique

C_O = Capacité de charge statique

La capacité de charge statique correspond à la charge radiale maximum qui doit être appliquée au roulement en l'absence de mouvement relatif entre le chariot et le rail.

		Capacité de cha	arge N (livre-force)	Ma Chariot	asse Rail
Taille	Style	C (@100km)	C_0	kg	kg/m
20	A G	9000 (2025)	11000 (2475)	0.22	0.79
25	A G	13000 (2925)	15000 (3375)	0.30	1.06
35	A G	25000 (5620)	28000 (6295)	0.74	2.27

	Capacité de charge dynamique	Limite de charge
F _c	С	С
F _t	С	0.6C
Fs	С	0.6C

Calcul de la durée de vie des roulements

 $L = (C/F)^3 \times 100 \text{ km}$

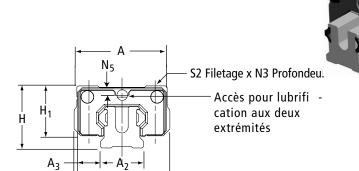
où :

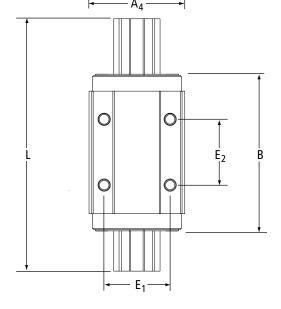
L = durée de vie, km

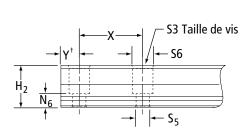
C = charge dynamique de base, N

 $\mathsf{F} = \mathsf{charge}$ dynamique appliquée, N

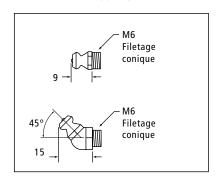
Paramètres de fonctionnement


Vitesse maximum = 3 m/s


Accélération maximum = 50 m/s2


Température maximum = 80 °C

Guidage à billes sur rail Série T



t- sera identique aux deux extrémités, sauf spécification contraire.

Composants de Iubrification fournis

Guidage sur rail étroit Série T Style E

Taill	e A	A1	A2	А3	A4	Н	H1	H2	В	E1	E2	S2	S3	S 5	S6	N3	N5	N6	Х	Lmax
20	44	22	20	12	41.5	30	25	18	76	32	36	M5	M5	5.8	9.5	6	6.25	7.5	60	3000
25	48	24	23	12.5	50.9	40	33.5	22	88	35	35	M6	M6	7	10.7	8	12	10	60	3000
35	70	35	34	18	68.0	55	47	29	117	50	50	M8	M8	9	14	12	13.6	11	80	3000

Toutes les cotes sont exprimées en mm, sauf spécification contraire.

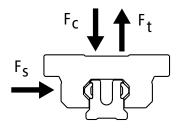
Guidage sur rail haut étroit Série T Style F

Taill	e A	A1	A2	А3	A4	Н	H1	H2	В	E1	E2	S2	S 3	S 5	S6	N3	N5	N6	Х	Lmax
20	42	21	20	11	41.5	28	23	18	76	32	32	M5	M5	5.8	9.5	6	4.25	7.5	60	3000
25	48	24	23	12.5	51.0	33	26.5	22	88	35	35	M6	M6	7	10.7	8	5	10	60	3000
35	70	35	34	18	68.0	48	40	29	117	50	50	M8	M8	9	14	12	6.6	11	80	3000

Toutes les cotes sont exprimées en mm, sauf spécification contraire.

Guidage à billes sur rail Série T Styles E et F

Capacité de charge dynamique


C = Capacité de charge dynamique

La capacité de charge dynamique est basée sur une durée de vie de 100 km. Pour effectuer une comparaison avec des roulements prévus pour 50 km, divisez la capacité dynamique de ces derniers par 1,26.

Capacité de charge statique

C_O = Capacité de charge statique

La capacité de charge statique correspond à la charge radiale maximum qui doit être appliquée au roulement en l'absence de mouvement relatif entre le chariot et le rail.

		Capacité de cha	Ma Chariot	sse Rail					
Taille	Style	C (@100km)	, ,						
20	E F	9000 (2025)	11000 (2475)	0.22	0.79				
25	E F	13000 (2925)	15000 (3375)	0.30	1.06				
35	E F	25000 (5620)	28000 (6295)	0.74	2.27				

	Capacité de charge dynamique	Limite de charge
F _c	С	С
F _t	С	0.6C
Fs	С	0.6C

Calcul de la durée de vie des roulements

 $L = (C/F)^3 \times 100 \text{ km}$

où:

L = durée de vie, km

C = charge dynamique de base, N

 $\mathsf{F} = \mathsf{charge}$ dynamique appliquée, N

Paramètres de fonctionnement

Vitesse maximum = 3 m/s

Accélération maximum = 50 m/s2

Température maximum = 80 °C

REMARQUES:

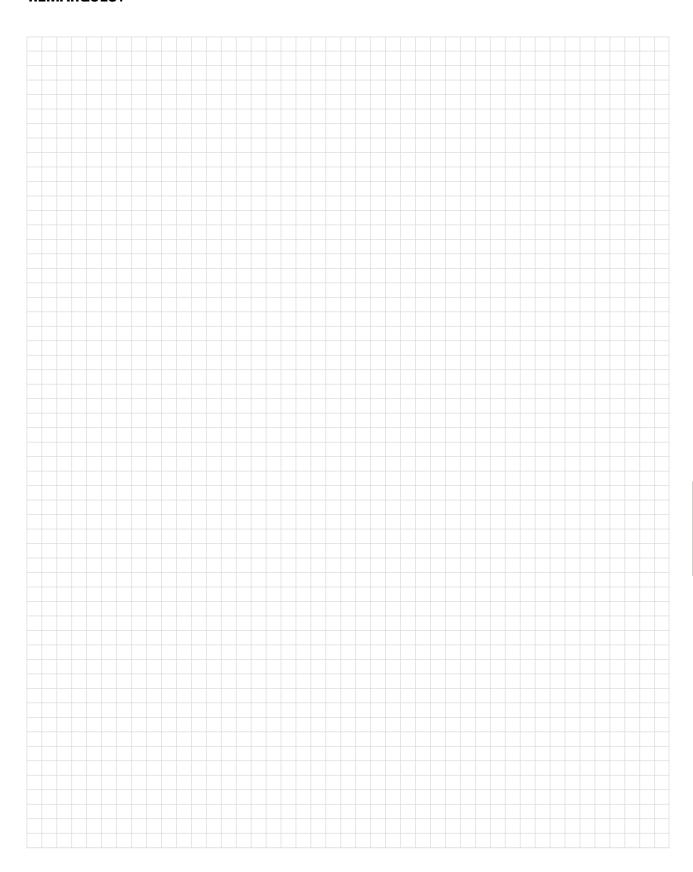


Figure 1

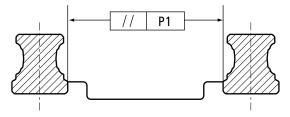


Tableau 1. Parallélisme entre plusieurs rails, mm

Précharge Précharge					
Type de roulement	Jeu	0,03 C†	0,08 C†	0,13 C [†]	
Guidage linéaire à billes Série 500					
15	0,015	0,010	0,007	0,003	
20	0,017	0,012	0,008	0,004	
25	0,024	0,016	0,010	0,005	
30	0,024	0,016	0,010	0,005	
35	0,032	0,021	0,014	0,008	
45	0,036	0,024	0,016	0,009	
Guidage linéaire à ro	ouleaux Série	500			
25	_	0,016	0,010	0,005	
35	-	0,012	0,014	0,008	
45	_	0,024	0,016	0,009	
55	-	0,026	0,017	0,010	
65	_	0,028	0,018	0,011	
Guidage linéaire Aco	cuMini				
10	0,009	0,004	_	-	
15	0,011	0,006	-	-	
20	0,013	0,008	-	-	
Guidage linéaire Sér	ie T*				
15	0,045	_	_	_	
20	0,045	-	-	-	
25	0,050	-	-	-	
30	0,055	1	-	-	
35	0,060	1	-	-	
Guidage linéaire à billes Série 400					
15	0,025	0,018	_	-	
20	0,025	0,020	_	-	
25	0,025	0,020	_	-	
30	0,040	0,030	-	-	
35	0,050	0,035	_	_	
45	0,060	0,040	_	_	
55	0,070	0,050	_	_	

[†] où C = Capacité de charge dynamique

Préparation des surfaces

Les roulements des guidages sur rail sont généralement montés sur des structures qui sont intrinsèquement plus rigides que les rails. C'est pourquoi ils tendent à prendre en charge l'orientation des surfaces auxquelles ils sont fixés, par déformation. Lorsqu'une déformation est imposée à un roulement, en particulier un roulement préchargé, l'exercice de forces en résulte. Ces forces sont transmises aux éléments roulants et aux chemins de roulement, entraînant éventuellement une augmentation des frottements au sein du système et une érosion de sa résolution, de sa précision et de sa durée de vie.

Divers facteurs peuvent contribuer à une erreur globale des surfaces de montage, notamment la planitude des surfaces de base, l'emplacement et le parallélisme des surfaces de référence ainsi que les erreurs concomitantes du roulement, comme décrit dans les catégories de précision.

Les surfaces en contact avec les arêtes de base et de référence peuvent être laminées, raclées, broyées ou préparées au moyen de toute autre méthode afin de créer une surface de montage plane et uniforme, capable de dévier ou d'incliner le roulement. Une simple pierre peut être utilisée pour éliminer les surépaisseurs localisées. Les poussières et les débris doivent être nettoyés car ils peuvent entraîner des imprécisions.

Une légère concavité de la surface supérieure du chariot peut être associée à la précharge. La précharge est établie lorsque toutes les vis du chariot sont fixées à une surface plane, aplatissant ainsi la base du chariot. Les déviations affectant la planarité de la surface de montage du chariot peuvent entraîner un changement de précharge.

Tolérances de montage

Les tolérances décrites dans les tableaux 1-3 permettent d'effectuer des installations avec un déclassement négligeable. Ces spécifications reposent sur l'hypothèse que les structures de l'application sont infiniment rigides et sont à prendre en compte pour les réactions du roulement seulement.

Parallélisme des rails (voir Figure 1)

Toute variation de la distance entre les rails entraînera un effort de coupe ou une charge latérale sur les roulements.

Pour minimiser l'impact de l'effort de coupe, les tolérances de parallélisme des arêtes de référence des rails sont décrites dans le tableau 1.

Figure 2

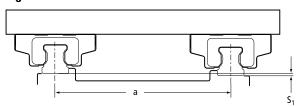


Tableau 2. Décalage vertical accepté entre les rails (S1/a), pouce

Précharge				
Type de roulement	Jeu	0,03 C [†]	0,08 C [†]	0,13 C [†]
Billes Série 500	0,0006	0,0004	0,0003	0,0002
Rouleaux Série 500	_	0,0007	0,0005	0,0004
Guidage linéaire AccuMini	0,0006	0,0004	_	-
Guidage linéaire Série T	0,0020	-	-	_
Série 400 15, 20 et 25	0,0050	0,0030	-	_
Série 400 30	0,0060	0,0040	-	-
Série 400 35	0,0080	0,0050	_	_
Série 400 45	0,0090	0,0060	-	_
Série 400 55	0,0118	0,0080	-	_

[†]où C = Capacité de charge dynamique

Figure 3

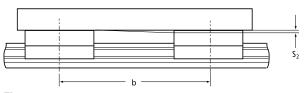


Figure 4

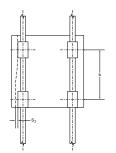


Tableau 3. Décalage du chariot accepté (S2/b)

Précharge				
Type de roulement	Jeu	0,03 C [†]	0,08 C [†]	0,13 C [†]
Série 500 (Tout)	0,00006	0,00005	0,00004	0,00003
Série 400 15 et 20	0,0009	0,0007	_	_
Série 400 25	0,0011	0,0008	_	_
Série 400 30	0,0015	0,0011	_	_
Série 400 35	0,0019	0,0013	_	_
Série 400 45	0,0023	0,0015	_	_
Série 400 55	0.0027	0.0017	_	_

[†] où C=Capacité de charge dynamique

Guidage linéaire Série T 0,00012

Décalage vertical des rails (voir Figure 2)

Un décalage vertical des rails sur l'axe induit un moment de roulement sur les chariots.

Les tolérances de décalage vertical permettant de minimiser l'impact de ce moment de roulement sont décrites dans le tableau 2. Ces tolérances définissent les attributs de la surface de montage, perpendiculairement à l'axe du rail.

Décalage vertical du chariot (voir Figure 3)

Un décalage vertical entre l'avant et l'arrière du chariot induit un moment de pas sur les roulements.

Décalage latéral du chariot (voir Figure 4)

Un décalage latéral des arêtes de référence du chariot induit un moment de lacet.

Les tolérances permettant de minimiser l'impact de ces moments de pas et de lacet sont décrites dans le tableau 3. Elles définissent les attributs de la surface de montage parallèlement à l'axe du rail, ainsi que la rectitude des arêtes de référence.

REMARQUE: Toutes les tolérances de montage doivent inclure les tolérances H et A3. Par conséquent, un roulement dont la catégorie de précision est inférieure peut nécessiter une installation plus précise.

Tolérances des trous de montage

La tolérance de positionnement entre les trous passants dans les rails est de 0,5 mm.

La tolérance de positionnement du premier trou de montage coté à partir de l'extrémité de référence (appelée α cote Y ») est de $\pm 1,0$ mm.

La tolérance sur la longueur totale du rail est de ±2,0 mm.

La tolérance de positionnement entre les trous de montage dans le chariot est égale à 0,2 mm.

Spécifications des arêtes de référence

Les hauteurs d'épaulements et les rayons d'angles maximum sont indiqués dans le tableau 4.

Tableau 4. Hauteur des épaulements et rayons des angles, mm

Type de guidage	Ra	ail	Chariot	
	h1 max.	r1 max.	h2	r2 max.
Guidage linéaire	à billes Série	500		
15	3,5	0,8	3,5	0,6
20	4	0,9	4	0,9
25	5	1,1	5	1,1
30	5,5	1,3	5,5	1,3
35	6	1,3	6	1,3
45	8	1,3	8	1,3
Guidage linéaire	à rouleaux Sé	rie 500		
25	5	0,8	5	0,8
35	6	0,8	6	0,8
45	8	0,8	8	0,8
55	10	1,2	10	1,2
65	10	1,5	10	1,5
Guidage linéaire	AccuMini			
10	1,75	0,4	3,5	0,4
15	1,75	0,4	5	0,4
20	2	0,5	7	0,5
Guidage linéaire	Série T*			
15	3	0,3	8	0,2
20	3,9	0,4	10	0,3
25	5,5	0,5	12	0,4
30	5,9	0,7	14	0,5
35	5,9	0,8	15	0,6
Guidage linéaire	à billes Série	400		
15	2,8	0,6	5	0,6
20	4,3	0,9	6	0,9
25	5,6	1,1	7	1,1
30	6,8	1,4	8	1,4
35	7,3	1,4	9	1,4
45	8,7	1,6	12	1,6
55	11,8	1,6	17	1,6

Tableau 5. Couple de serrage des boulons recommandé, Nm

Taille de boulon	Classe 8.8	Classe 12.9
M2.5	0,7	1,2
M4	2,8	4,6
M5	5,7	9,5
M6	9,5	16
M8	23	39
M10	46	77
M12	80	135
M14	129	215
M16	198	330

Procédure d'installation

Nettoyez toutes les surfaces d'ajustement et vérifiez qu'elles sont exemptes de bavures, saletés et encoches, etc. Une simple pierre peut être utilisée pour éliminer les petites imperfections des surfaces de montage.

Remarque: les guidages Série T tolèrent davantage, mais dans une certaine limite, les imperfections présentes sur la surface de montage.

Montage du rail

- 1. Placez soigneusement le rail sur la surface de montage.
- Introduisez les vis dans les trous de montage et serrezles légèrement.
- 3. Bloquez l'arête de référence du rail contre une arête de positionnement sur la surface de montage.

L'arête de positionnement peut être une arête droite, une rangée de goupilles ou de clés, une arête de référence usinée ou toute autre arête contre laquelle le rail peut être bloqué. Elle doit être droite et conforme aux tolérances de montage indiquées dans le tableau 3 ou imposées par l'application, les tolérances les plus strictes s'appliquant.

- 4. En commençant par le centre du rail et en s'en éloignant progressivement, serrez chaque vis selon le couple de serrage recommandé dans le tableau 5.
- 5. Si vous prévoyez d'utiliser des rails parallèles, vous pouvez suivre l'une des méthodes ci-dessous pour obtenir le parallélisme recommandé dans le tableau 1:
 - a. Deux arêtes de positionnement parallèles
 - b. Une cale-étalon ou parallèle entre les rails
 - c. L'utilisation de la plaque supérieure avec les chariots montés, pour positionner ou « laisser flotter » le deuxième rail en place
- 6. Répétez les étapes 1-4 pour installer le deuxième rail.
- 7. Introduisez un embout de rail dans chaque avanttrou. Enfoncez-les avec précaution au moyen d'un matériau souple, comme du laiton ou du bois. Lorsqu'ils sont correctement installés, les embouts de rail ne doivent plus dépasser de la surface supérieure du rail. Ils ne doivent en aucun cas être fraisés.

Remarque: Les embouts de rail sont livrés avec tous les rails, à l'exception des rails pour guidages linéaires AccuMini de taille 10.

 Si vous le souhaitez, vous pouvez apposer du ruban sur le dessus des rails. Pour les rails de tailles 35 et inférieures, il est possible d'utiliser du ruban sans les embouts.

Figure 5. Hauteur des épaulements et rayons des angles

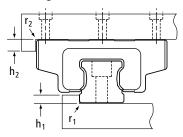


Figure 6. Rails assemblés bout à bout

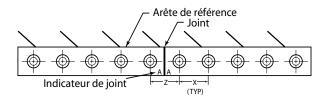
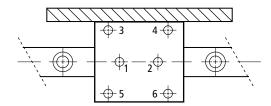



Figure 7. Séquence de serrage recommandée

Joints d'about

Pour les rails dont la longueur est supérieure à la plus grande longueur disponible en une pièce, il est nécessaire d'utiliser un joint d'about. Celui-ci est formé en assemblant les extrémités de deux rails. Les extrémités des rails à mettre bout à bout sont spécialement usinées et identifiées par une même lettre (A, B, C, etc.).

Nous recommandons vivement l'usage d'une arête de positionnement lorsque vous utilisez des rails mis bout à bout afin d'aligner correctement les chemins de roulement le long du joint.

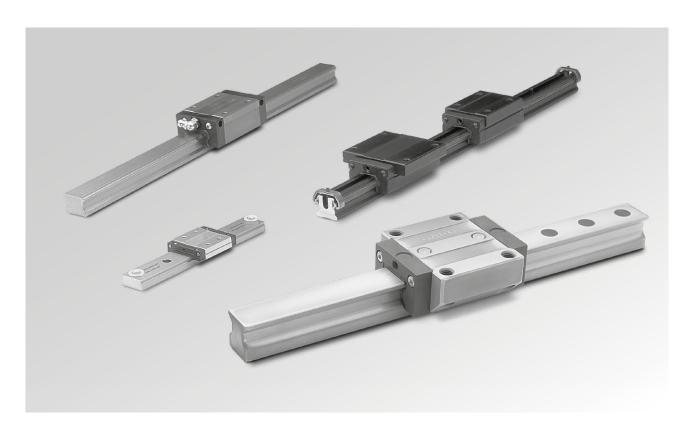
Pour les rails des guidages linéaires Série 500 à billes et Série 400 à rouleaux, Z, qui représente l'espace entre les trous de montage le long du joint, sera égal à X, qui désigne l'espace entre les trous de montage standard.

Une fois les rails montés, un espace de 0,5 mm maximum entre les extrémités des rails assemblés bout à bout est toléré.

Montage du chariot

- 1. Placez la plaque supérieure sur les chariots avec précaution.
- 2. Introduisez les vis dans les trous de montage et serrezles légèrement.
- 3. Fixez l'arête de référence des chariots aux arêtes de positionnement placées sous la plaque supérieure.

Remarque: Cette opération est nécessaire uniquement si l'emplacement du centre de la plaque supérieure est essentiel pour l'application ou si la plaque supérieure est utilisée pour positionner en parallèle un deuxième rail.


- 4. Serrez chaque vis selon le couple de serrage recommandé dans le tableau 5. Pour les chariots dotés de six vis de montage, il est recommandé d'utiliser la séquence de serrage illustrée Figure 7.
- 5. Lubrifiez les roulements.

Remarque: Soyez très vigilant lorsque vous montez les chariots sur les rails. Si vous forcez pour installer un chariot sur un rail, vous risquez de faire tomber les éléments roulants et/ou d'endommager le chariot et le rail.

Si le guidage est soumis à des forces latérales importantes, il est recommandé de procéder à un montage fixe afin qu'il puisse résister à toute translation. Vous pouvez notamment utiliser des lardons coniques, des plaques de retenue ou des vis de pression avec les arêtes de référence usinées. Vous pouvez également utiliser un matériau de réplication/époxy, des goupilles et des clés. Des chariots et des rails peuvent être spécialement conçus à la demande pour s'adapter aux goupilles ou aux clés. Pour plus d'informations, contactez l'usine.

Guide technique des guidages sur rail

Sommaire

Description Page
Sélection des guidages sur rail107
Présentation de la technologie
Définition de la taille et des caractéristiques des guidages 108
Calcul des charges appliquées109
Capacités de charge: Guidages à éléments roulants et guidages avec contact à glissement
Précharge et déformation des guidages linéaires113
Force d'actionnement114
Lubrification116
Calcul de la longueur du couvre-glissières118
Spécifications des joints d'about
Tableau de conversion

Vous avez une question sur une application ou vous souhaitez un devis ?

Contactez-nous en Amérique du nord aux coordonnées suivantes :

Téléphone : 540-633-3549 Fax : 540-639-4162

E-mail: thomson@thomsonlinear.com

chnique

Sélection des guidages sur rail

La sélection d'un guidage linéaire peut affecter considérablement les performances des machines et les coûts globaux. Pour satisfaire aux diverses demandes qu'impliquent les applications aujourd'hui, il est impératif de choisir soigneusement un guidage linéaire parmi une offre diversifiée.

Par exemple, le choix d'un guidage trop raide entraînera des tolérances d'installation acceptables inférieures, augmentant considérablement de ce fait les coûts de préparation des surfaces. Si la surface de préparation n'est pas correctement préparée, le guidage fonctionnera de manière approximative et devra être remplacé plus fréquemment en raison de son usure prématurée.

Vous devez analyser tous les critères appropriés de l'application, notamment:

- Rigidité
- Précision du déplacement
- Durée de vie
- Fluidité du déplacement
- Vitesse et accélération
- Profil
- Environnement
- Coût du produit
- · Coût d'installation
- Coût de remplacement

La sélection du type de guidage le plus approprié doit reposer sur des critères quantitatifs et qualitatifs et la hiérarchisation selon le degré d'importance des critères de sélection énumérés ci-dessus, ainsi que les facteurs suivants relatifs à la technologie disponible.

Présentation de la technologie

Les performances d'un guidage linéaire reposent sur le type de contact, le type d'élément roulant, la géométrie du chemin de roulement interne (rails ronds et rails profilés), ainsi que d'autres caractéristiques telles que la capacité d'autoalignement. Il est important de reconnaître que les options disponibles pour chaque caractéristique induisent des attributs de performances. Lors de la sélection du guidage le plus approprié, il convient d'associer ces attributs aux critères les plus importants de l'application. Vous pouvez vous aider des facteurs technologiques suivants pour choisir le type de guidage sur rail le plus adéquat. Pour une analyse détaillée de votre application, contactez le service client de Thomson ou votre distributeur Thomson local.

Définition de la taille et des caractéristiques des guidages

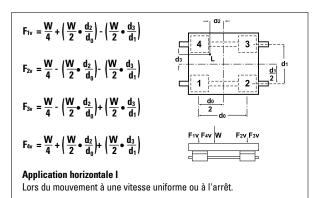
La procédure suivante en 9 étapes permet de sélectionner les caractéristiques requises pour indiquer la référence produit adéquate:

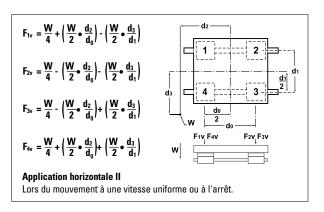
- Déterminez la charge sur le chariot ou le roulement le plus lourdement chargé (voir Calcul des charges appliquées). Si votre application l'impose, multipliez cette valeur par un coefficient de sécurité.
- 2. Déterminez la durée de vie minimum requise pour l'application selon le facteur d'utilisation prévu.
- 3. Calculez la capacité de charge dynamique minimum requise, \mathbf{C}_{\min} .
- 4. Sélectionnez la taille offrant la capacité de charge C, supérieure ou égale à la capacité de charge dynamique minimum requise, C_{min}. Évaluez également la limite de charge dynamique et les capacités statiques.
- 5. Si le guide sélectionné offre différents niveaux de précharge[†], sélectionnez une précharge en fonction de la déformation du roulement acceptable. Pour plus d'informations sur les caractéristiques de déformation, contactez l'usine. Ce catalogue présente les graphiques de déformation relatifs à certains chariots ou roulements.

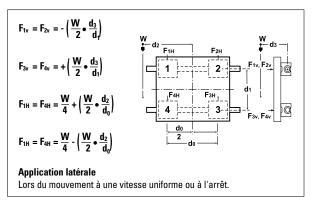
- Si le guidage sélectionné offre différentes catégories de précision, sélectionnez-en une selon la précision de déplacement requise.
- 7. Déterminez les accessoires ou les options éventuellement nécessaires.
- 8. Calculez la longueur du guidage selon la longueur de la course et des plaques. N'oubliez pas d'inclure la longueur des accessoires (par exemple, le composant d'autolubrification) et la réduction de la course résultant, le cas échéant, des soufflets utilisés.
- Une fois les caractéristiques ci-dessus déterminées, attribuez la référence produit appropriée selon les instructions correspondantes dans la section du catalogue dédiée au quidage linéaire choisi.
- † Le choix d'un niveau de précharge supérieur réduit les tolérances d'installation acceptables. Il est donc recommandé de sélectionner la précharge minimum satisfaisant aux exigences des applications. Si le niveau de précharge le plus élevé ne répond pas aux exigences de déformation, une taille supérieure peut être requise.

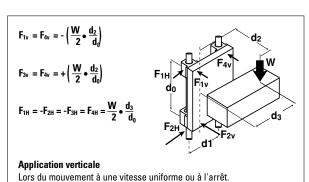
Calcul des charges appliquées

La majorité des applications utilisent des systèmes comprenant quatre chariots ou roulements et deux rails à des fins de stabilité. Quatre configurations types sont illustrées ci-après, de même que les calculs des charges résultantes appliquées à chaque roulement. Ces charges sont divisées en deux composants horizontal et vertical, représentant la vitesse statique ou constante et tenant compte de la gravité mais pas de l'accélération.


Utilisez la configuration appropriée pour déterminer les composants horizontal et vertical de la charge résultante appliquée au chariot ou au roulement le plus lourdement chargé. Ces valeurs seront désormais désignées par les lettres FH et FV, respectivement.


Conditions:


- d₀ = distance entre les axes médians des chariots ou des roulements (pouces) ou (mm)
- d₁ = distance entre les axes médians des rails (pouces) ou (mm)
- d₂ = distance entre l'axe médian du chariot ou du roulement et le point de chargement (pouce) ou (mm)
- d₃ = distance entre l'axe médian du chariot ou du roulement et le point de chargement (pouce) ou (mm)
- W = Charge appliquée (livre-force) ou (N)
- FNH = Composant horizontal de la charge résultante appliquée à chaque chariot ou roulement (livre-force) ou (N)
- **FNV** = Composant vertical de la charge résultante appliquée à chaque chariot ou roulement (livreforce) ou (N)


Rappel:

- Veillez à utiliser des unités uniformes (impériales ou métriques).
- Veillez à utiliser le signe approprié (positif ou négatif).
- Une valeur négative est employée lorsque la force réelle est appliquée dans la direction opposée à celle représentée par la flèche.

Au démarrage et à l'arrêt, la charge varie en raison de l'inertie.

Charge appliquée équivalente[†]

Une charge équivalente est utilisée pour consolider les composants de charge appliqués en une valeur unique qui pourra servir ultérieurement à calculer la capacité de charge minimum requise et la durée de vie prévue du chariot ou du roulement sélectionné.

Pour les chariots ProfileRail* et les roulements RoundRail* fermés :

$$F_{FO} = F_H + F_V$$

F_{EQ} = Charge équivalente

F_H = Composant horizontal de la charge appliquée résultante

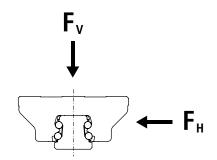
F_V = Composant vertical de la charge appliquée résultante

$$F_{FO} = F_H + F_V + (M/M_C) \times C$$

M = Charge de moment

M_C = Amplitude de moment dynamique du roulement

C = Capacité de charge dynamique du roulement


Pour les chariots préchargés [uniquement si $F_{EQ} < (3 x F_p)$]:

Même si aucune charge externe n'est appliquée, un roulement préchargé applique une charge aux chemins de roulement. Une charge supérieure à la charge appliquée de l'extérieur est présente dans un roulement auquel est appliquée une charge externe inférieure au point de fin de précharge. Pour calculer les charges sur les ensembles de charges, vous pouvez utiliser les formules suivantes:

$$F_{EQ} = F_p + \frac{2}{3} (F_H + F_V)$$

 F_p = Force de précharge initiale (c.-à-d. pour la désignation de précharge B F_p =0,03 x C)

- † Avant de calculer la valeur de F_{EO}, assurez-vous que ni F_H, ni F_V ne dépasse la limite de charge dynamique du guidage sélectionné. (Voir Limite de charge dynamique page 102).
- La valeur 0,6 utilisée tient compte d'un facteur de réduction de la capacité à l'application d'une charge de traction. Par conséquent, lorsque vous calculez la durée de vie prévue à partir de F_{EQ}, vous pouvez utiliser la capacité de charge dynamique totale (C).

Guide

Charge dynamique movenne

Dans les applications impliquant des charges de magnitude variable, il est recommandé de calculer une charge dynamique moyenne.

$$F_{\text{EQ}} = \sqrt[P]{F_{\text{EQ1}}^P(\frac{\text{d1}}{\text{D}}) + F_{\text{EQ2}}^P(\frac{\text{d2}}{\text{D}}) + \dots + F_{\text{EQn}}^P(\frac{\text{dn}}{\text{D}})}$$

οù

 $F_{EQ1}...F_{EQn}$ = charges dynamiques équivalentes sur les distances d1 à dn

D = distance totale de la course = d1+d2...+dm

P = 3 (guidages linéaires à billes)

10/3 (guidages linéaires à rouleaux)

Capacités de charge des guidages à éléments roulants

Capacité de charge dynamique, C, et durée de vie

La capacité de charge dynamique C est la charge qui, lorsqu'elle est appliquée, optimise la durée de vie nominale. La durée de vie nominale Lr, pour la plupart des guidages linéaires, est égale à 100 km soit4 millions de pouces. (La durée de vie nominale est indiquée à la page traitant de la capacité de charge dynamique). Pour une charge appliquée donnée, P, la capacité de charge dynamique et la durée de vie nominale servent à calculer la durée de vie au moyen de l'équation charge/durée de vie suivante:

$$L=(C/F_{EQ})^n \times L_r$$

où:

L = durée de vie calculée

C = capacité de charge dynamique F_{EO} = charge équivalente appliquée

n = 3 pour les guidages à billes, 10/3 pour les guidages

à rouleaux

L_r = durée de vie nominale

Les capacités de charge dynamique définies par certains fabricants sont basées sur une durée de vie de 50 km. Pour comparer les capacités de charge dynamique de guidages dotés d'une durée de vie de 50 km à des guidages ayant une durée de vie de 100 km, divisez la capacité de charge dynamique pour 50 km par 1,26.

$C100 \, \text{km} = C50 \, \text{km} / 1,26$

Certains types de guidages linéaires n'ont pas la même capacité de charge dynamique dans toutes les directions. La capacité de charge dynamique dans les directions de charge perpendiculaires est indiquée par un pourcentage de C. Il n'est pas nécessaire d'utiliser ce pourcentage dans l'équation charge/durée de vie à condition de satisfaire aux critères décrits à la **section Charge appliquée équivalente** car le calcul de cette dernière tient compte de ce pourcentage.

Calcul de la capacité de charge dynamique minimum requise C_{min}

L'équation charge/durée de vie ci-dessus peut être réécrite pour calculer la capacité de charge dynamique minimum requise à choisir pour une charge appliquée donnée et la durée de vie minimum requise:

$$C_{\min} = P(L_m/L_r)^1/n$$

οù

C_{min} = capacité de charge dynamique minimum requise

P = charge appliquée

L_m = durée de vie minimum requise

L_r = durée de vie nominale

n = 3 pour les guidages à billes, 10/3 pour les guidages à rouleaux

Remarque: vérifiez que la charge appliquée, P, ne dépasse pas la limite de charge dynamique.

Limite de charge dynamique

La limite de charge dynamique est la charge maximum qui doit être appliquée au chariot/palier à semelle. Dans certains cas, la capacité de charge dynamique peut être égale à la charge dynamique de base. Dans d'autres cas, une limite correspondant à un pourcentage de la capacité dynamique de base représentera la charge maximum à appliquer. Une limite de charge dynamique inférieure à la charge dynamique de base ne réduira pas la durée de vie des guidages.

Capacités statiques

Les capacités statiques sont les charges maximum qui doivent être appliquées au roulement en l'absence de mouvement relatif entre les éléments roulants et les chemins de roulement. La valeur C_0 désigne la capacité de charge statique d'une charge radiale appliquée perpendiculairement à l'axe du déplacement. Les valeurs M_{0L} et M_{0Q} désignent les capacités de moment statiques de roulement, de pas et de lacet.

Il est important d'analyser l'application afin que les charges de choc n'excèdent pas ces capacités. Toute charge de choc supérieure risque de déformer définitivement les éléments roulants et les chemins de roulement. Ce type d'endommagement se manifestera par une augmentation du frottement, du bruit et des vibrations, ainsi qu'un jeu accru entre les chariots et les rails.

Lorsque les systèmes sont soumis à des charges de choc répétées inférieures aux capacités de charge statique, il est recommandé de déterminer la durée de vie du roulement au moyen de calculs de la fatigue.

technique

Précharge et déformation des guidages linéaires

Précharge

Un roulement préchargé présente une condition d'interférence entre les chemins de roulement des rails et du chariot, ainsi que les éléments roulants.

La précharge réduit la déformation causée par les charges externes, et ce car la réaction au contact s'est déjà produite, éliminant une bonne partie de la déformation non linéaire initiale associée aux éléments roulants.

Il peut être admis que les réactions des éléments roulants dans un roulement préchargé ont deux composants. Un composant agit dans la direction de la charge externe et l'autre dans la direction opposée afin de maintenir un équilibre statique. Ces composants sont appelés « ensembles de charge ». Lorsqu'une charge externe est appliquée, un ensemble de charge voit sa charge augmenter, tandis que l'ensemble de charge opposé voit sa charge décroître. À un moment donné, la charge de l'ensemble de charge décroissant devient nulle. Ce moment auquel la précharge n'est plus appliquée est appelé « point de fin de précharge ». Il se produit généralement lorsque la charge externe est approximativement trois fois supérieure à la précharge.

Point de fin de précharge:

$$F_{\rm ext} = 3F_{\rm p}$$

οù

F_{ext} = charge appliquée de l'extérieur

F_D = précharge

Par définition, un roulement préchargé, chargé au-delà du point de fin de précharge, présente les mêmes caractéristiques de déformation qu'un roulement non préchargé chargé de l'extérieur à ce pourcentage de sa capacité de charge dynamique. Un niveau de précharge correspondant au pourcentage de la capacité de charge dynamique du roulement est défini.

Courbes de déformation

Les courbes pour les produits Thomson Série 500 sont disponibles à l'adresse : www.thomsonlinear.com.

Exemples d'applications

Précharge	Jeu	0,03C	0,08 - 0,13C
Conditions	impact faible 2. 2 rails en paire faible précision faible résistance	cantilever monorail charge légère haute précision	impact fort fortes vibrations usinage lourd
Applications	machine à souder machine à tronçonner mécanisme d'alimentation mécanisme de changement d'outil table XY ordinaire	tour à contrôle numérique EDM table XY précise axe Z ordinaire robot industriel gravure de circuit imprimé	centre d'usinage tour à contrôle numérique et machine à fraiser axe d'alimentation d'une broyeuse axe d'alimentation d'un outil

Force d'actionnement

La force requise pour actionner un guidage linéaire (FA) implique quatre composants de base:

- 1. Résistance de frottement (F_f)
- 2. Résistance intrinsèque (D_{int})
- 3. Inertie des composants mobiles (F_{inertie})
- 4. Traînée visqueuse de la lubrification (D_i)

$$\mathbf{F}_{A} = \mathbf{F}_{f} + \mathbf{D}_{int} + \mathbf{F}_{inertie} + \mathbf{D}_{I}$$

Résistance de frottement

Guidages à éléments roulants

Un frottement se produit dans les guidages à éléments roulants, résultant du glissement des éléments roulants dans le chemin de roulement. La résistance de frottement peut être calculée au moyen de l'équation suivante:

$$F_f = \mu \times F_i$$

où:

 μ = coefficient de frottement (selon le type de guidage, le type d'élément roulant et la charge)

Fi = force interne du guidage linéaire

Le tableau suivant indique le coefficient de frottement des différents types de guidages:

Guidage sur rail				
Type à billes	Type à rouleaux			
0,002 - 0,003	0,001 - 0,002			

La valeur du coefficient de frottement est une fonction de la charge appliquée. Il augmente en fonction de la charge appliquée en raison de la zone de contact entre les éléments roulants et le chemin de roulement.

La force interne du guidage linéaire est égale à la force externe ($F_{\rm ext}$) appliquée au guidage linéaire dans les guidages non préchargés et aux guidages préchargés soumis à une charge 3 fois supérieure à la valeur de précharge ($F_{\rm p}$).

$$F_i = F_{ext}$$

Dans le cas de guidages préchargés soumis à une charge 3 fois inférieure à la valeur de précharge (F_p) , la force interne peut être approchée au moyen de l'équation suivante:

$$F_i = 2F_p + 1/3 F_{ext}$$

echnique

Résistance intrinsèque

La résistance intrinsèque est la force d'actionnement mesurée requise pour déplacer le guidage à une vitesse constante, sans lubrification, quelle que soit la charge. Elle consiste en la force et l'entraînement du joint (composant de grande taille) requis pour déplacer les éléments roulants (composant de petite taille). Il peut être supposé que la résistance intrinsèque est une constante pour les guidages linéaires soumis à une charge supérieure de 5 % à leur capacité de charge dynamique (C). Pour les guidages soumis à une charge inférieure à cette valeur, la force requise pour déplacer les éléments roulants sera supérieure.

Le schéma suivant illustre la résistance intrinsèque, D_{intr} pour différents types et tailles de guidages linéaires.

Inertie des composants mobiles

L'inertie est directement liée à la masse et à l'accélération selon l'équation suivante :

$$F_{inertie} = Ma$$

Traînée visqueuse de la lubrification

La traînée visqueuse du lubrifiant varie selon la viscosité du lubrifiant choisi.

Précharge

La précharge de l'ensemble a un impact sur la résistance intrinsèque : plus la précharge est élevée, plus la résistance intrinsèque au déplacement du guidage sera élevée.

Guidage à billes sur rail Série 500

Taille D _{int} (N)	A	chariot , C , (N)	В	e chariot , D _{nt} (N)
Précharge	0,03C	0,13C	0,03C	0,13C
15	7	15	8	14
20	10	16	11	18
25	13	22	14	22
30	16	26	19	30
35	23	37	25	41
45	27	44	30	49

Valeurs pour huile de lubrification VG68, vitesse 0,1 m/s

Guidage à rouleaux sur rail Série 500

Taille	Style de chariot A, C D _{int} (N)	Style de chariot B, D D _{int} (N)
25	17	18
35	35	51
45	53	60
55	98	124
65	_	170

Valeur pour précharge 0,13 C, huile de lubrification VG68, vitesse 0,1 m/s

Lubrification

La lubrification protège les systèmes contre l'usure, la corrosion, la chaleur et le frottement. Des variables spécifiques aux applications, comme la charge, la vitesse et des conditions liées à l'environnement, déterminent le lubrifiant le plus approprié ainsi que la fréquence de lubrification à mettre en oeuvre pour les applications en question.

Thomson recommande globalement comme lubrifiant pour les guidages linéaires une graisse de qualité 2. Il est également recommandé de procéder à une lubrification au moins une fois par an ou tous les 100 km, selon le premier cas de figure qui se présente. Il est conseillé d'utiliser une graisse comprenant un additif pour pression extrême lorsque les guidages sont soumis à une charge 50 fois supérieure à leur capacité de charge dynamique (C). Il est également possible d'utiliser de l'huile, recommandée pour les applications dans lesquelles les roulements sont soumis à des vitesses élevées. Utilisez le port de lubrification le plus élevé sur les roulements lubrifiés à l'huile verticaux afin de profiter de l'effet de la gravité pour assurer une bonne diffusion du lubrifiant.

Les guidages linéaires sont légèrement enduits d'un conservateur gras. Ce conservateur est destiné à les protéger pendant le stockage uniquement et n'est pas recommandé pour la lubrification des roulements.

Procédure de lubrification

Pour garantir une diffusion parfaite du lubrifiant, il est conseillé de déplacer le chariot le long du rail pendant son application afin d'assurer sa circulation dans toutes les surfaces internes des roulements. Veillez à ne pas lubrifier excessivement les roulements car le surplus de lubrifiant s'écoulera du chariot sous les joints.

Les volumes de lubrifiant initiaux recommandés pour les roulements de la série 500 sont indiqués dans les tableaux. Le volume recommandé pour une relubrification est égal à la moitié du volume initial.

Course brève

Dans le cas d'une course s'étendant sur moins de deux fois la longueur du chariot, deux orifices de lubrification sont recommandés, un à chaque extrémité, afin d'assurer la bonne lubrification de l'intégralité de la gorge de roulement à billes ou des rouleaux.

Réservoir d'huile

Le réservoir d'huile est ajouté en usine et prêt à l'emploi, c'est-à-dire rempli d'huile. La relubrification dépend de nombreux facteurs, notamment la vitesse, la température, la propreté du système, etc. Voici quelques recommandations à prendre en compte lorsque vous relubrifiez vos guidages. (Il est recommandé de répéter la lubrification tous les 12 mois.)

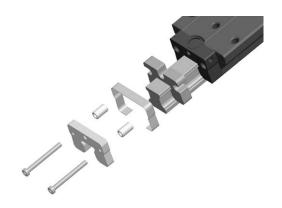
Le réservoir est rempli à l'usine d'huile Kluber Lamora D220. Si vous utilisez une autre huile pour la relubrification, il vous incombe d'en déterminer la compatibilité. Le volume de remplissage recommandé est indiqué dans le tableau.

Volume de graisse initial pour roulements à billes Série 500

Taille	Style de chariot A, C, E (cm³)	Style de chariot B, D, F (cm³)
15	0,9	_
20	1,7	2,1
25	2,8	3,5
30	4,7	5,8
35	6,6	8,1
45	12,6	15,6

Volume de graisse initial pour roulements à rouleaux Série 500

Taille	Style de chariot A, C (cm³)	Style de chariot B, D (cm³)
25	1,9	2,2
35	2,9	3,7
45	5,3	6,6
55	10,6	10,6
65	_	18,9


Vol. de remplissage du réservoir d'huile

Taille	Billes Série 500 Huile 5310W (cm³)	Rouleaux Série 500 Oté d'huile 5320W (cm³)
15	0,5	_
20	1,4	_
25	2,4	2,2
30	2,9	_
35	5.	6
45	10,9	11
55	_	19
65	_	43

Intervalle de relubrification

Taille	15	20	25	30	35	45	55	65
Distance de		0.5001				F000 I		
déplacement	2 500 km			n			5000 km	ı

Bloc de lubrification pour guidage sur rail autolubrifié

L'option bloc de lubrification avec autolubrification élimine les opérations de maintenance et renforce la protection de diverses applications. Il apporte notamment les avantages suivants:

- Réduction du coût des systèmes, en éliminant la nécessité de concevoir, d'acheter et d'installer des systèmes de lubrification coûteux
- Fonctionnement respectueux de l'environnement
- Prolongation de la durée de vie des roulements en assurant une meilleure protection

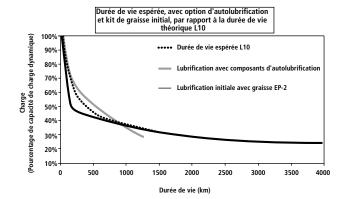
Conception

L'option d'autolubrification utilise des accessoires d'autolubrification aux deux extrémités du chariot et comprend un kit de graisse EP2 initial sur le chariot. Les accessoires d'autolubrification consistent en une section de polymère saturé en huile activement comprimée par un ressort de contact dans un joint à double lèvre.

Le ressort de contact assure le contact permanent avec le rail, libérant l'huile à mesure que le chariot se déplace. Une fine couche de lubrifiant est ainsi appliquée entre les éléments roulants et les chemins de roulement. Lorsque le chariot est au repos, l'huile est réabsorbée par le polymère.

Performances

Cette conception intègre un polymère saturé en huile utilisé depuis plus de 10 ans pour la lubrification des roulements radiaux. Cette méthode de lubrification a fait ses preuves et donné d'excellents résultats dans des applications allant du traitement agroalimentaire au montage de véhicules automobiles.


Le graphique ci-dessous illustre la durée de vie espérée théorique L10 et les résultats des tests réels des deux méthodes de lubrification suivantes:

- Roulement doté d'accessoires d'autolubrification seulement.
- 2. Roulement doté initialement du kit de graisse EP2 seulement.

Paramètres de test

Course: 500 mm Vitesse: 0,6 m/s

Ce graphique montre comment l'option d'autolubrification, qui combine les accessoires d'autolubrification et le kit de graisse initial, permet d'obtenir la durée de vie espérée L10 du roulement dans toutes les conditions de charge. Notez que pour les durées de vie excédant 30 000 km, il est recommandé de recharger ou de remplacer le polymère d'autolubrification.

Calcul de la longueur étendue du couvre-glissières et de la longueur du rail

Étant donné la course et la distance entre les extrémités du chariot :

Longueur étendue du couvre-glissières (mm) = Course (mm)/(1-CR) Après division, arrondissez la valeur à l'incrément suivant de 5mm. Cette valeur servira de longueur pour la référence de glissière à commander.

La longueur étendue du couvre-glissières sera découpée en V creux à l'usine

Longueur réduite du couvre-glissières (mm) = Longueur étendue du couvre-glissières (mm) - Course (mm).

Longueur du rail = Longueur réduite + Longueur étendue + Distance entre les extrémités du chariot.

Exemple:

Produit: Guidage linéaire à billes Série 500 taille 35

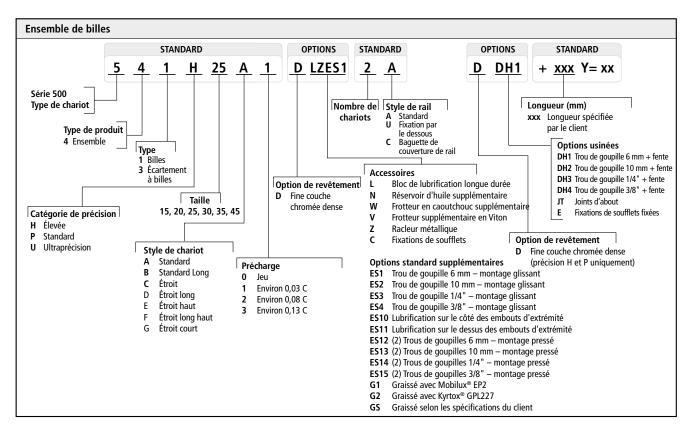
Longueur de course = 200 mm
Distance entre les extrémités du chariot = 520 mm
Type de soufflet = Walk-On (Accessoire)
CR = 0,19 pour les soufflets de type Walk-on pour
guidages à billes Série 500 taille 35
Longueur étendue du couvre-glissières = Course/
(1-CR) = 200 mm/(1-0,19) = 200 mm/(0,81 = 246,91 mm

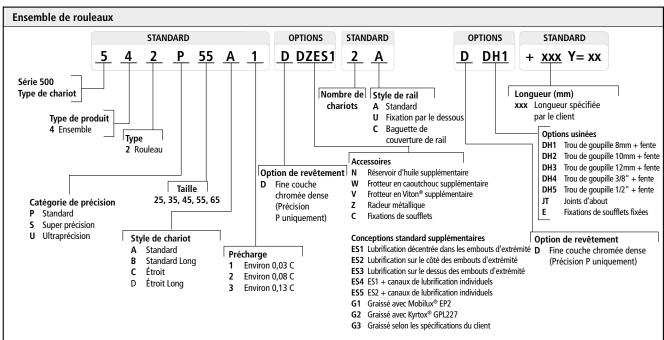
Arrondissez la valeur à l'incrément suivant de 5 mm et vous obtenez :

Longueur étendue du couvre-glissières = 250 mm Longueur réduite du couvre-glissières = Longueur étendue du couvre-glissières - Course = 250 mm -200 mm = 50 mm

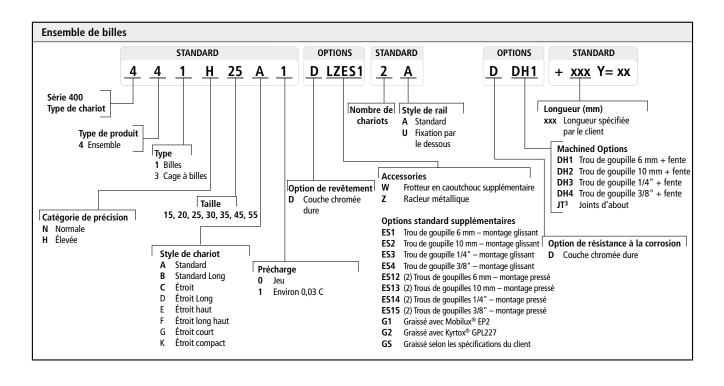
Longueur du rail = Longueur réduite + Longueur étendue + Distance entre les extrémités du chariot = $50 \, \text{mm} + 250 \, \text{mm} + 520 \, \text{mm} = 820 \, \text{mm}$

Fiche de spécifications pour l'assemblage bout à bout de rails

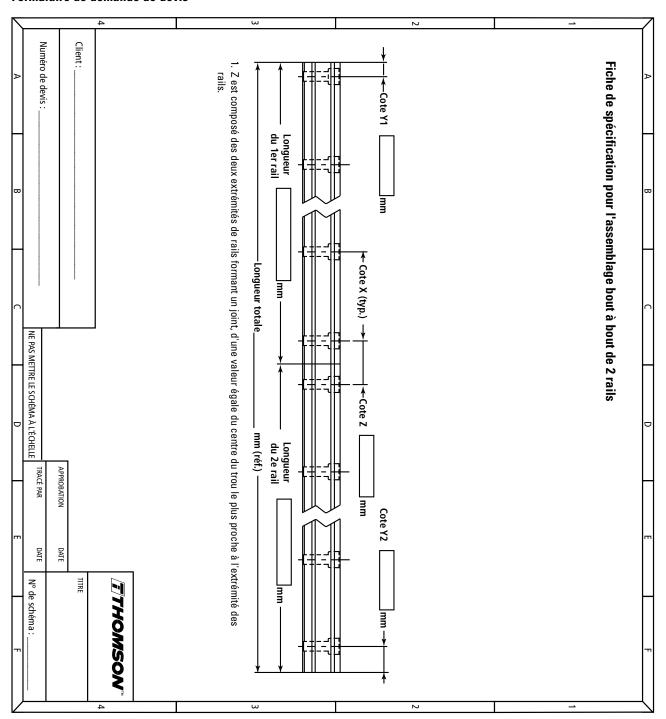

Un joint d'about sera requis pour les longueurs de rails supérieures à la longueur maximale illustrée dans le schéma ci-dessous. Dans ce cas, les longueurs des premier et deuxième rails doivent être chacune inférieure à la longueur maximale illustrée. Les cotes Y1 et Y2 doivent être comprises entre les valeurs minimum et maximum illustrées ci-dessous afin d'éviter de transpercer un trou de montage. Il est recommandé d'utiliser la cote Z standard pour obtenir des performances optimales.


Guidage linéaire Produit	Taille	Cote X	Standard Cote Z	Minimum Cote Y	Maximum Cote Y	Taille des attaches	Longueur maximum sans joint
Billes Série 500	15	60	60	8	52	M4	1 500
Billes Série 500	20	60	60	8	52	M5	3 000
Billes Série 500	25	60	60	8	52	M5	6 000
Billes Série 500	30	80	80	10	70	M8	6 000
Billes Série 500	35	80	80	10	70	M8	6 000
Billes Série 500	45	105	105	13	92	M12	6 000
Rouleaux Série 500	25	30	30	8	52	M6	6 000
Rouleaux Série 500	35	40	40	10	30	M8	6 000
Rouleaux Série 500	45	52,5	52,5	13	39,5	M12	6 000
Rouleaux Série 500	55	60	60	15	45	M14	6 000
Rouleaux Série 500	65	75	75	17	58	M16	6 000

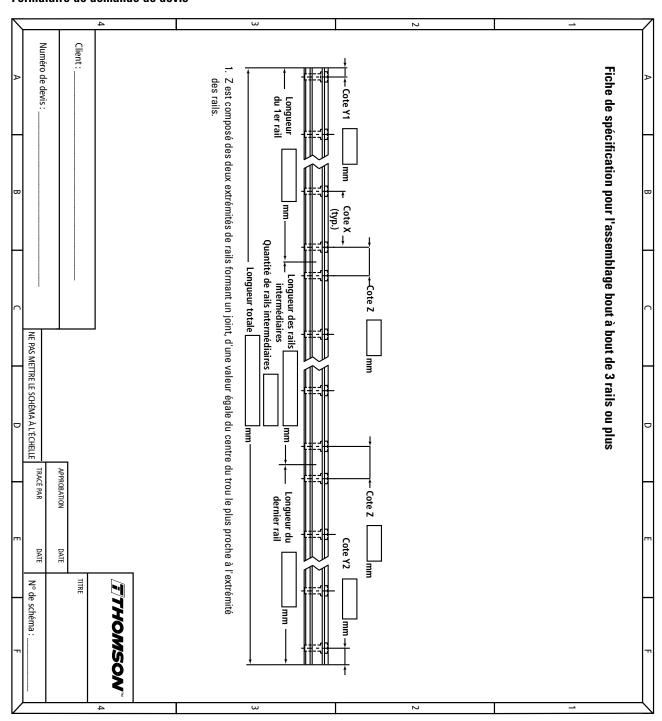
Toutes les cotes sont en mm.



Composition des références Série 500



Composition des références Série 400



Formulaire de demande de devis

Formulaire de demande de devis

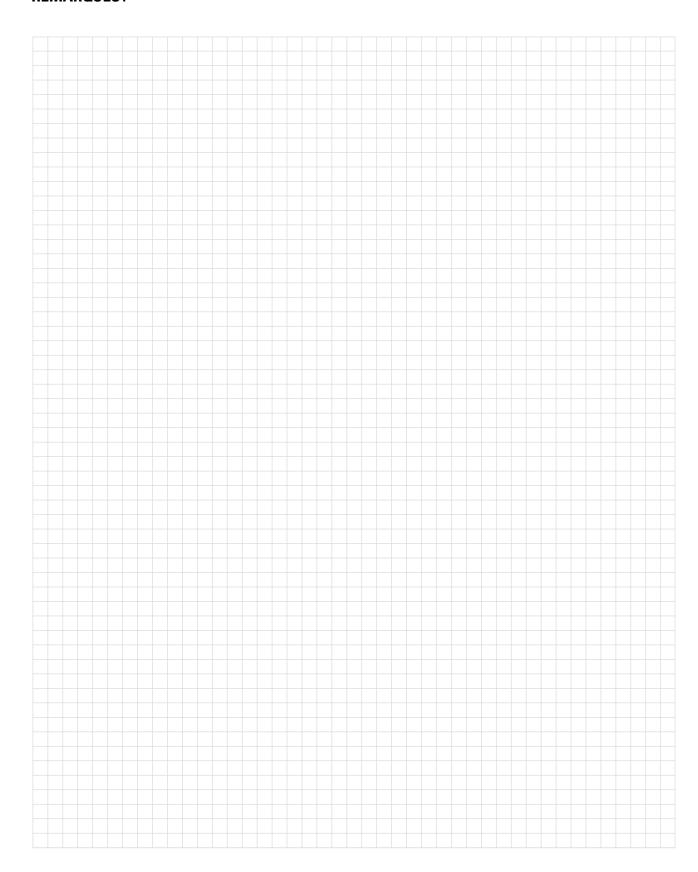


Tableau de conversion d'unités

	Conventionnel				
Quantité	Unité impériale	Unité métrique (MKS)	Unité SI	Facteurs d	le conversion
Longueur	Pouce in	Mètre m	Mètre m	1 in 1 mm 1 m	= 25,4 mm = 0,03937 in = 3,2808 ft
Surface	Pouce carré in²	Mètre carré m²	Mètre carré m²	1 ft 1 in² 1 cm² 1 m² 1 ft²	= 0,3048 m = 6,4516 cm ² = 0,155 in ² = 10,764 ft ² = 0,092903 m ²
Masse	Livre	Kilogramme kg	Kilogramme kg	1 lb _m 1 kg	= 0,45359237 kg = 2,2046 lb
Force	Livre force Ib _f	Kilogramme force kg f	Newton N	1 lb _f 1 lb _f 1 kg _f 1 kg _f 1 kg _f 1 N 1 N	= 0,45359237 kg _f = 4,44822 N = 2,2046 lb _f = 9,80665 N = 0,1019716 kg _f = 0,224809 lb _f
Contrainte ou Pression	Livres par Pouce carré Ib _f /in²	Kilogrammes par Mètre carré kg_f/m ²	Pascal Pa	1 MPa 1 kPa 1 lb _f /in² 1 lb _f /in² 1 lb _f /in² 1 lb _f /in² 1 kg _f /cm² 1 kg _f /cm²	= 10^{8} N/m ² = N/mm ² = 10^{3} N/m ² = 0.070307 kg _f /cm ² = 7.0307×10^{4} kg _f /mm ² = 6.8947×10^{3} N/mm ² (MPa) = 14.2233 lb _f /in ² = 9.80665×10^{2} N/mm ² (MPa)
Couple ou Travail	Pouce Livres Ib_f-in	Kilogramme Mètres kg_f-m	Newton- Mètres Nm	1 lb _f -in 1 kg _f -cm 1 lb _f -in 1 kg _f -m 1 kg _f -cm 1 Nm 1 Nm	= 1,1521 kg _f -cm = 0,8679 lb _f - in = 0,1129848 Nm = 9,80665 Nm = 9,80665 x 10^{-2} Nm = 8,85 lb _f - in = 10,19716 kg _f -cm
Puissance	Livre pied par minute Ib _f -ft/min	Force par seconde kg_f-m/s	Newton mètre par seconde Nm/s	1 kW 1 kW 1 kW 1 kW 1 ch 1 ch 1 ch	= 1 000 Nm/s = 60 000 Nm/s = 44 220 lb _f -ft/min = 1,341 ch = 75 kg _f -m/s = 44,741 Nm/min = 33 000 lb _f -ft/min = 0,7457 kW
Vitesse	Pieds par seconde ft/s	Mètres par seconde m/s	Mètres par seconde m/s	1 ft/sec 1 in/sec 1 ft/sec 1 mile/h 1 km/h 1 mile/h	= 0,3048 m/s = 2,54 cm/s = 0,00508 m/s = 0,44704 m/s = 0,27777 m/s = 1,609344 km/h
Accélération	Pieds par seconde au carré ft/s²	Mètres par seconde au carré m/s ²	Mètres par seconde au carré m/s ²	1 ft/s²	= 0,3048 m/s ²

REMARQUES:

Guide de remplacement

FICHE DE REMPLACEMENT DES GUIDAGES THK HSR LM PAR LES GUIDAGES À BILLES THOMSON SÉRIE 500					
THK HSR	BILLES THOMSON SERIE 500				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c cccc} & \textbf{R\'ef. chariot} \\ \underline{\text{HSR}} & \underline{20} & \underline{A} & \underline{\text{UU}} \\ \hline 1 & 2 & 3 & 9 \end{array}$	$ \begin{array}{c cccc} \textbf{R\'ef. chariot} \\ \underline{511} & P & \underline{20} & \underline{A} & \underline{1} \\ \hline 1 & 0 & 0 & 0 \end{array} $				
Réf. rail HSR 20 + 1000L 7	$ \begin{array}{c cccc} & Réf. rail \\ & \underline{521} & \underline{P} & \underline{20} & \underline{A} & \underline{1000} \\ & 1 & 6 & 2 & 8 & 7 \end{array} $				

1. TYPE					
THK	BILLES THOMSON SERIE 500				
Chariot - HSR	Chariot - 511				
Rail - HSR	Rail - 521				
2. `	TAILLE				
THK	BILLES THOMSON SERIE 500				
15	15				
20	20				
25	25				
30	30				
35	35				
45	45				
55	\$.0.				
3. STYLE	DE CHARIOT				
ТНК	BILLES THOMSON SERIE 500				
Α	А				
В	A				
CA	A				
СВ	A				
LA	В				
LB	В				
HA	В				
HB	В				
R	E				
TR	E				
LR	F F				
HTR	F				
4. CHARIC	OTS PAR RAIL				

5. PRÉCHARGE		
THK	BILLES THOMSON SERIE 500	
vide	0	
C1	1	
C2	2	
S.O.	3	
6. PRÉ	CISION	
ТНК	BILLES THOMSON SERIE 500	
vide	Н	
Н	Н	
Р	P	
SP	U	
UP	U	
7. LONGUEUR		
ТНК	BILLES THOMSON SERIE 500	
xxxxL	xxxx	
8. STYLE DE RAIL		
ТНК	BILLES THOMSON SERIE 500	
vide	A	
К	U	
S.O.	С	
9. JC	DINTS	
ТНК	BILLES THOMSON SERIE 500	
SS	vide	
ÜÜ	vide	
ZZ	Z	
DD	W	
KK	WZ	
ΩZ	N	
S.O.	L	

Guide de remplacement

FICHE DE REMPLACEMENT DES GUIDAGES À BILLES STAR PAR LES GUIDAGES À BILLES THOMSON SÉRIE 500	
STAR	THOMSON
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Réf. chariot 511 P 20 A 1 1 5 3 2 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	1. TYPE		
	STAR	THOMSON	
	16	Chariot - 511 Rail - 521	
	2. STYLE		
	STAR	THOMSON	
	03	В	
	04	A	
∟ ا	21	E	
₩	22	С	
CHARIOT	23	D	
	24	F	
	51	Α	
	53	В	
	66	G	
	1605-X0X-XX	A + 531HP	
	1605-X3X-XX	C + 531RCS (tailles 25 et plus)	
I ⊒	1605-X6X-XX	C + 531RCS (tailles 25 et plus)	
RAIL	1607-XXX-XX	U	
	1645-X03-XX	AD + 531HP	
	1645-X33-XX	CD + 531RCS (tailles 25 et plus)	
	1647-X03-XX	UD	

3. TAILLE STAR 1 15 2 25 3 35 4 45 5 \$S.0. 6 \$S.0. 7 30 8 20 4. PRÉCHARGE		
1 15 25 35 45 45 5 S.O. 66 S.O. 7 30 20 4. PRÉCHARGE		
2 25 3 35 4 45 5 S.O. 6 S.O. 7 30 8 20		
3 35 45 5 S.O. 6 S.O. 7 30 20 4. PRÉCHARGE		
4 45 5.0. 6 S.0. 7 30 20 4. PRÉCHARGE		
5 S.O. S.O. 7 30 20 4. PRÉCHARGE		
6 S.O. 7 30 8 20 4. PRÉCHARGE		
7 30 8 20 4. PRÉCHARGE		
8 20 4. PRÉCHARGE		
4. PRÉCHARGE		
STAR THOMSON		
1 1		
2 2		
3 3		
9 0		
5. PRÉCISION		
STAR THOMSON		
1 U		
2 P		
3 H		
4 H		
9 0		
6. LONGUEUR DE RAIL		
STAR THOMSON		
XXXX +XXXXX		
7. RÉVISION		
STAR THOMSON		
10 vide		
20 vide		

FICHE DE REMPLACEMENT DES GUIDAGES À ROULEAUX STAR PAR LES GUIDAGES À ROULEAUX THOMSON SÉRIE 500	
STAR	THOMSON
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Réf. chariot 512 P 20 A 1 T T T 3 2 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

4 TVDF				
	1. TYPE			
	STAR	THOMSON		
	18	Chariot - 512 Rail - 522		
	2. STYLI	E		
	STAR	THOMSON		
_	51	A		
윤	53	В		
CHARIOT	21	С		
ادا	24	D		
	Rail - voir STYLE DE RAIL,	sections 1, 2, 8 et 9		
	3. TAILL	E		
	STAR	THOMSON		
	2	25		
3		35		
4		45		
5		55		
6		65		
	4. PRÉCHARGE			
STAR THOMSON				
	1*	1		
	2	2		
	3	3		
	5. PRÉCISION			
	STAR THOMSON			
	3	S.O.		
	2	P		
	1	S		
	9	U		

6. LONGUEUR			
STAR THOMSON			
XXXX		+XXXX	
	7. VERSION		
	STAR	THOMSON	
10 13 (EMBOUT EN ALUMINIUM) 18		vide S.O. ES4	
	60 CTV/ F DE DA	Fine couche chromée dense	
STYLE DE RAIL 1, 2, 8 ET 9 STAR THOMSON			
1805-x2x-31		THOMSON C	
	0.1	-	
1805-x3x-31	C + 532RCS (taille 25)		
1805-x3x-61	C + 532RCS (tailles 35 et plus)		
1805-x5x-31	A		
1805-x6x-31	C + 532RCS (taille 25)		
1805-x6x-61	C + 532RCS (tailles 35 et plus)		
1806-x5x-31	A		
1807-x0x-11	U		
1845-x1x-31	A + Fine c	ouche chromée dense	
1845-x5x-31	C + Fine couche chromée dense + 532RCS (taille 25)		
1845-x5x-61	C + Fine couche chromée dense + 532RCS (tailles 35 et plus)		
1845-x8x-31	C + Fine couch	e chromée dense + 532RCS	
1847-x1x-31	U + Fine couche chromée dense		
18xx-xxx-41	Embout à revêtement pour options fine couche chromée dense au lieu de -31		
18xx-xxx-71		nent pour options fine couche dense au lieu de -61	

Les guidages à billes sur rail Série 500 de Thomson remplacent les guidages sur rail Thomson AccuGlide.

Ils offrent les avantages suivants par rapport à leurs prédécesseurs:

- Rectitude renforcée des rails grâce aux technologies de polissage avancées
- Installation plus simple et plus grande précision grâce à des rails d'une pièce mesurant jusqu'à 6 mètres
- Mouvement plus fluide et plus silencieux grâce aux circuits de recirculation moulés brevetés, aux transitions réduites et aux géométries optimisées
- Capacité de charge accrue grâce aux circuits de billes plus longs et au nombre total d'éléments roulants
- Conceptions de chariots et de joints modulaires faciles à utiliser et facilement modifiables sur site
- Personnalisation possible grâce à une offre d'accessoires diversifiée

FICHE DE REMPLACEMENT DES GUIDAGES THOMSON AccuGlide* PAR LES GUIDAGES À BILLES THOMSON SÉRIE 500		
THOMSON AccuGlide*	BILLES THOMSON SERIE 500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c cccc} & \textbf{R\'ef. rail} \\ & \frac{RG}{1} & \frac{20}{2} & \frac{P}{5} & \frac{L1000}{6} & \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

1. TYPE		
AccuGlide	BILLES THOMSON SERIE 500	
Chariot - CG Rail - RG	Chariot - 511 Rail - 521	
2. TAII	LE	
AccuGlide	BILLES THOMSON SERIE 500	
15	15	
20	20	
25	25	
30	30	
35	35	
45	45	
55	S.O.	
3. STYLE DE CHARIOT		
AccuGlide	BILLES THOMSON SERIE 500	
AA	Α	
BA	В	
CE	С	
DE	D	
EE	E	
HE	F	
4. PRÉCHARGE		
AccuGlide	BILLES THOMSON SERIE 500	
Α	0	
В	1	
С	2	
D	3	

5. PRÉCISION		
AccuGlide		BILLES THOMSON SERIE 500
N	Н	
Н		Н
P		P
S		U
U	0.101	U
	6. LUN	GUEUR
AccuGlide		BILLES THOMSON SERIE 500
Lxxxx		xxxx
7. STYLE DE RAIL		
AccuGlide		BILLES THOMSON SERIE 500
_		Α
S.O.		U
S.O.	С	
8. OPTIONS ¹		
AccuGlide	BILLES THOMSON SERIE 500	
Α		D
C2C2 (plastique) C3C3	C (acier)	
D####	Voir p. 132 ou consultez Thomson	
KK	W W	
LDS	Le joint longitudinal standard est à faible entraînement.	
П п		
M###	Voir p. 132 ou consultez Thomson	
R2R2	E	
ZZ	Z	
S.O.	V (frotteur Viton)	
\$.0.	N (réservoir d'huile)	

Les guidages à rouleaux sur rail Série 500 de Thomson remplacent les guidages sur rail Thomson AccuMax.

Ils offrent les avantages suivants par rapport à leurs prédécesseurs:

- Rectitude renforcée des rails grâce aux technologies de polissage avancées
- Installation plus simple et plus grande précision grâce à des rails d'une pièce mesurant jusqu'à 6 mètres
- Mouvement plus fluide et plus silencieux grâce aux circuits de recirculation moulés brevetés, aux transitions réduites et aux géométries optimisées
- Capacité de charge accrue grâce aux circuits de rouleaux plus longs et au nombre total d'éléments roulants
- Offre diversifiée de chariots à rouleaux ultrarigides de toutes tailles et tous styles, et pour toutes les applications
- Conceptions de chariots et de joints modulaires faciles à utiliser et facilement modifiables sur site
- Personnalisation possible grâce à une offre d'accessoires diversifiée

FICHE DE REMPLACEMENT DES GUIDAGES THOMSON AccuMax* PAR LES GUIDAGES À ROULEAUX THOMSON SÉRIE 500	
THOMSON AccuMAX*	ROULEAUX THOMSON SERIE 500
$\begin{array}{c cccc} \textbf{R\'ef. ensemble} \\ \underline{CM} \ \underline{35} \ \underline{AA} \ \underline{B} \ \underline{S} \ \underline{S} \ \underline{8} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} & \textbf{R\'ef. rail} \\ \frac{\text{RM}}{1} & \frac{35}{2} & \frac{\text{S}}{5} & \frac{\text{L}1000}{6} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1. TYPE		
AccuMax	ROULEAUX THOMSON SERIE 500	
Chariot - CM	Chariot - 512	
Rail - RM	Rail - 522	
2. TAILLE		
AccuMax	ROULEAUX THOMSON SERIE 500	
S.O.	25	
35	35	
45	45	
55	55	
S.O.	65	
3. STYLE DE CHARIOT		
AccuMax	ROULEAUX THOMSON SERIE 500	
AA	A	
S.O.	В	
S.O.	C	
S.O.	D	
4	. PRÉCHARGE	
AccuMax	ROULEAUX THOMSON SERIE 500	
В	1	
С	2	
D	3	

5. PRÉCISION			
AccuMax		ROULEAUX THOMSON SERIE 500	
Р		P	
S		S	
U		U	
	6. LON	GUEUR	
AccuMax		ROULEAUX THOMSON SERIE 500	
Lxxxx		XXXX	
7. STYLE DE RAIL			
AccuMax		ROULEAUX THOMSON SERIE 500	
_		А	
S.O.		Ü	
S.O.		С	
	8. OP 1	TIONS ¹	
AccuMax		ROULEAUX THOMSON SERIE 500	
Α		D	
C2C2 (plastique)	C (acier)		
C3C3 D####	C III		
D#### КК	Voir p. 132 ou consultez Thomson W		
LDS	Le joint longitudinal standard est à faible		
1 200	entraînement.		
LL	L		
M###	Voir p. 132 ou consultez Thomson		
R2R2	<u> </u>		
ZZ	Z		
S.O.		V (frotteur Viton)	

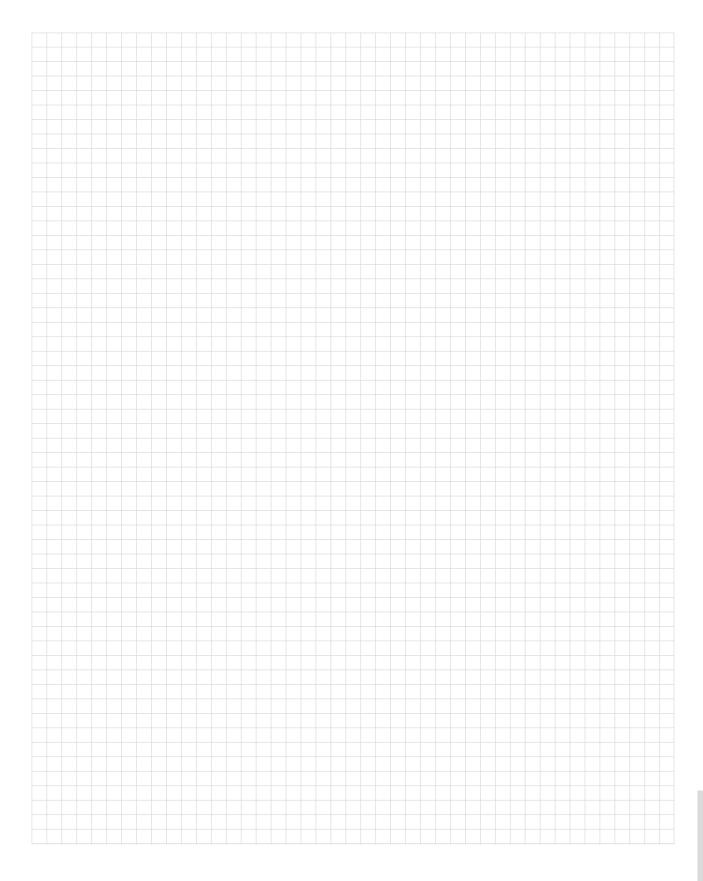
FICHE DE REMPLACEMENT DES GUIDAGES THK SHS LM PAR DES GUIDAGES À CAGE À BILLES SUR RAIL THOMSON SÉRIE 400			
THK SHS	THOMSON SÉRIE 400		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	et		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Réf. rail SHS 25 -1200L H (GK) RAIL 7 6	$ \begin{array}{c cccc} & & \mathbf{R\'ef. rail} \\ & \underline{421} & \underline{H} & \underline{25} & \underline{A} + \underline{1000} \\ & 1 & 6 & 2 & 8 & 7 \end{array} $		

1. TYPE			
THK	THOMSON SÉRIE 400		
Chariot - SHS	Chariot - 413*		
Rail - SHS	Rail - 421		
	2. TAILLE		
THK	THOMSON SÉRIE 400		
15	15		
20	20		
25	25		
30	30		
35	35		
45	45		
55	55		
65	\$.0.		
3. STYLE DE CHARIOT			
THK	THOMSON SÉRIE 400		
l c	A		
LC	В		
l v	С		
LV	D		
R	E		
LR	F		
4. CHARIOTS PAR RAIL			

^{*} Les chariots Série 400 de Thomson sont disponibles à billes (411) et à cage à billes (413), alors que les chariots THK SHS sont disponibles à cage uniquement. Les guidages à billes Thomson Série 400 peuvent être remplacés par des chariots THK SHS si l'application n'exige pas de réduction du bruit à des vitesses élevées. Les chariots à billes sont plus économiques et de cotes interchangeables avec les chariots THK SHS. Lors de la sélection du type de chariot, la mention 413 peut être remplacée par 411 pour passer du type à billes au type à cage à billes.

5. PRÉCHARGE			
ТНК	THOMSON SÉRIE 400		
vide	0		
C1	1		
CO	\$.0.		
6. PRÍ	CISION		
ТНК	THOMSON SÉRIE 400		
vide	N		
Н	Н		
7. LONGUEUR			
ТНК	THOMSON SÉRIE 400		
xxxxL	xxxx		
8. STYLE DE RAIL			
ТНК	THOMSON SÉRIE 400		
vide	A		
K	U		
9. JOINTS			
ТНК	THOMSON SÉRIE 400		
UU	vide (standard)		
SS	vide (standard)		
DD	W		
ZZ	Z		
KK	WZ		

Options AccuGlide communes


Chariot	
Options	Option Série 500
C2C2	C
C3C3	С
D035	ES1
D047	ES10*
D065	ES2
D086	ES1ES10*
D087	ES8 ou ES1ES10*
D088	ES2ES10*
D089	ES9 ou ES2ES10*
D134	ZCES1
D135	CES1
D147	CES10*
D150	ZC
D164	ZCES2
D165	CES2
D186	CES1ES10*
D187	CES7 ou CES10*
D188	CES10*
D189	CES9 ou CES2ES10*
D192	LCES9 ou LCES2ES10*
D234	LES1
D235	LZES1
D236	LZCES1
D237	LCES1
	LC
D241	LZC
D251	
D262	LES2
D263	LCES2
D264	ZES2
D265	LZES2
D266	LZCES2
D267	LCES2
D274	LES12
D275	LZES12
D289	LES9 ou LES2ES10*
D292	LZES9 ou LZES2ES10*
LDS	désormais standard
LL	L
LLZZ	LZ
M035	ES3
M038	CES3
M041	options latérales 1/4-28 in : option ES7 ou ES10*
M043	C + options latérales 1/4-28 in : option CES7 ou CES10*
M047	ES7 ou ES10*
M049	CES7 ou CES10*
M063	CES4
M065	ES4
M075	ES14
M077	ES14 + ES7
M087	ES5
M088	ES4ES10
M089	ES6
M094	ES7 + ES15
M095	ES15

Chariot	
Options	Option Série 500
M097	ZES15
M099	CES15
M125	ES11
M134	ES6
M147	CES7
M153	W
M157	WZ
M168	Duralloy
M171	Z
M183	ZES5
M186	ES5
M187	CES5
M188	CES10*
M189	CES6
M192	ZES6
M209	LES6
M210	WES7
M234	LES3
M235	LZES3
M236	LZCES3
M241	LC
M242	Duralloy + L
M249	LCES7 ou LCES10*
M251	LZC
M263	LES4
M264	ZES4
M265	LZES4
M266	LZCES4
M267	LCES4
M275	LZES14G1
M287	LES5
M289	LES6
M290	LCES6
M292	LZES6
M293	WES5
M294	GS
77	Z
_ <i></i>	

^{*} Option ES10 : lubrification latérale dans l'embout d'extrémité, taille $15\,=\,M3$, tailles 20 et plus=M6.

0	Dásissation Cásis FOO
Options de rails	Désignation Série 500
D080	DH1
D085	DH2
D181	EDH1
D185	EDH2
D187	EDH2
M080	DH3
M082	EDH3
M083	EDH3
M085	DH4
M088	EDH4
M091	EDH4
R2R2	E
R3R3	E

REMARQUES:

EUROPE

Royaume-Uni

Thomson

Téléphone: +44 (0) 1271 334 500 Fax: +44 (0) 1271 334 501

E-mail: sales.uk@thomsonlinear.com

Allemagne

Thomson

Nürtinger Straße 70 72649 Wolfschlugen

Téléphone: +49 (0) 7022 504 0 Fax: +49 (0) 7022 504 405

E-mail: sales.germany@thomsonlinear.com

France

Thomson

Téléphone: +33 (0) 243 50 03 30 Fax: +33 (0) 243 50 03 39

E-mail: sales.france@thomsonlinear.com

Italie

Thomson Largo Brughetti 20030 Bovisio Masciago

Téléphone: +39 0362 594260 Fax: +39 0362 594263

E-mail: info@thomsonlinear.it

Espagne

Thomson

Rbla Badal, 29-31 7th, 1st

08014 Barcelone

Téléphone: +34 (0) 9329 80278 Fax: +34(0)932980278

E-mail: sales.esm@thomsonlinear.com

Suède

Thomson Estridsväg 10 29109 Kristianstad

Téléphone: +46 (0) 44 24 67 00 Fax: +46 (0) 44 24 40 85

E-mail: sales.scandinavia@thomsonlinear.com

AMÉRIQUE DU SUD

Thomson

Sao Paulo, SP Brésil

Téléphone: +55 11 3879-6600

Fax: +55 11 3879 6656

E-mail: sales.brasil@thomsonlinear.com

ÉTATS-UNIS, CANADA et MEXIQUE

Thomson

203A West Rock Road Radford, VA 24141, États-Unis Téléphone: 1-540-633-3549 Fax: 1-540-633-0294

E-mail: thomson@thomsonlinear.com

Documentation: literature.thomsonlinear.com

ASIE

Asie Pacifique

Thomson

750, Oasis, Chai Chee Road, #03-20, Technopark @ Chai Chee,

Singapour 469000

E-mail: sales.apac@thomsonlinear.com

Chine

Thomson

Rm 2205, Scitech Tower 22 Jianguomen Wai Street

Pékin 100004

Téléphone: +86 400 6661 802 Fax: +86 10 6515 0263

E-mail: sales.china@thomsonlinear.com

Inde

Thomson

1001, Sigma Building Centre d'affaires Hiranandani Powai , Bombay – 400076 Téléphone: +91 22 422 70 300

Fax: +91 22 422 70 338

E-mail: sales.india@thomsonlinear.com

Japon

Thomson

Minami-Kaneden 2-12-23, Suita Osaka 564-0044 Japon Téléphone: +81-6-6386-8001

Fax: +81-6-6386-5022

E-mail: csinfo_dicgj@danaher.co.jp

Corée

Thomson

F12 Ilsong Bldg, 157-37 Samsung-Dong, Gangnam-gu, Séoul, Corée (135-090) Téléphone: +82 2 6917 5049

Fax: +82 2 6917 5007

E-mail: sales.korea@thomsonlinear.com

